SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE LIST

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities*). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
APPLICABILITY TABLE

PRODUCTS

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC864 SERIES</td>
<td>10</td>
</tr>
<tr>
<td>GE864 SERIES</td>
<td>10</td>
</tr>
<tr>
<td>GE865 SERIES</td>
<td>10</td>
</tr>
<tr>
<td>GL865 SERIES</td>
<td>10</td>
</tr>
<tr>
<td>GL868 SERIES</td>
<td>10</td>
</tr>
<tr>
<td>GE910 SERIES</td>
<td>13</td>
</tr>
<tr>
<td>GE910-QUAD V3</td>
<td>2G</td>
</tr>
<tr>
<td>GL865-DUAL V3</td>
<td>16</td>
</tr>
<tr>
<td>GL865-QUAD V3</td>
<td>16</td>
</tr>
<tr>
<td>GL868-DUAL V3</td>
<td>16</td>
</tr>
<tr>
<td>GL868-QUAD V3</td>
<td>16</td>
</tr>
<tr>
<td>GE866-QUAD</td>
<td>16</td>
</tr>
<tr>
<td>UL865 SERIES</td>
<td>12</td>
</tr>
<tr>
<td>UL865-N3G</td>
<td>12</td>
</tr>
<tr>
<td>UE910 SERIES</td>
<td>12</td>
</tr>
<tr>
<td>HE910 SERIES</td>
<td>12</td>
</tr>
<tr>
<td>HE910 MINI PCIE</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Platform Version ID is a reference used in the document. It identifies the different SW versions, e.g. 10 for SW version 10.xx.xxx, 13 for SW version 13.xx.xxx, etc.
8 TEXT TELEPHONE TYPEWRITER (TTY) .. 21

9 DTMF TONES ... 23
 9.1 DTMF Local Generation .. 23
 9.2 DTMF Transmission on Uplink .. 23
 9.2.1 DTMF Generated by AT Command 23
 9.2.2 DTMF Generated by an External Source 24
 9.3 Embedded DTMF Decoder .. 24
 9.3.1 Decoder Enhancement .. 26

10 ACOUSTIC ECHO CANCELLER .. 27
 10.1 AEC of First Generation .. 28
 10.1.1 Echo Canceller .. 29
 10.1.2 Automatic Gain Control ... 29
 10.1.3 Noise Reduction .. 30
 10.1.4 Comfort Noise Injector ... 30
 10.2 AEC of Second Generation ... 31

11 ECALL ... 33

12 AUDIO STREAMING ... 34
 12.1 AT#SPCM Command ... 34
 12.1.1 Play Local PCM Stream on Local APK 34
 12.1.2 Play a PCM Stream on a Far-End Device 37
 12.1.3 Play a PCM Stream on a Far-End Device and Local SPK ... 38
 12.1.4 Convert Local Audio Signal from MIC into Local PCM Stream 39
 12.1.5 PCM Stream on Output Serial Line 40
 12.1.6 From MIC to Output Serial Line 41
 12.1.7 RX/TX PCM Streams .. 42
 12.2 AT#APLAY Command ... 43
 12.2.1 PCM Audio File Played on Speaker 43
 12.2.2 PCM Audio File Sent on Uplink 45
 12.3 AT#SPCM Command & DTMF ... 46
 12.4 AT#SAMR Command .. 47
 12.4.1 Play Local AMR Stream on Local SPK 48
 12.4.2 Play an AMR Stream on a Far-End Device 49
 12.5 AT#SAMR Command & DTMF ... 49

13 MODULES SERIES AND AUDIO PATHS 50

14 APPENDIX ... 51
14.1 Microphone Line Guidelines ... 51
 14.1.1 Single Ended Input Amplifier .. 51
 14.1.2 Differential Input Amplifier ... 51
 14.1.2.1 Practical Suggestions ... 52
 14.1.3 HandsFree ... 53
 14.1.4 Definitions .. 54
 14.1.4.1 Normal Spoken Condition .. 54
 14.1.4.2 Nominal Sensitivity .. 54
 14.1.4.3 Microphone Electrical Level ... 54
 14.2 Electret Microphone .. 55
 14.2.1 Principle of Operation ... 55
 14.2.2 Types .. 55
 14.2.3 Practical Suggestions .. 58
 14.3 Speaker Line Guidelines ... 59
 14.3.1 Single Ended (SE) .. 59
 14.3.2 Differential (BTL) ... 59
 14.4 Audio Profile Parameters for AEC of the First Generation 60
 14.4.1 Configuration of an AEC of the First Generation 61
 14.5 Audio Codec Information and Setting ... 66
15 GLOSSARY AND ACRONYMS ... 67
16 DOCUMENT HISTORY .. 68
FIGURES LIST

Fig. 1: Main Functional Blocks of the Audio Section .. 13
Fig. 2: AFE Block Diagram .. 14
Fig. 3: Master and Slave Configuration .. 18
Fig. 4: TTY Device/Module Connection .. 21
Fig. 5: Acoustic Echo Canceller of First Generation .. 28
Fig. 6: Acoustic Echo Canceller of Second Generation ... 31
Fig. 7: Local SPK Plays a Local External PCM Stream ... 35
Fig. 8: Play a PCM Stream on Far-End Device ... 37
Fig. 9: Play a PCM Stream on Far-End Device and Local SPK .. 38
Fig. 10: PCM Stream Coming from Local MIC ... 39
Fig. 11: Remote Audio Signal from Downlink to Output Serial Line 40
Fig. 12: From MIC to Output Serial Line .. 41
Fig. 13: RX and TX PCM Streams .. 42
Fig. 14: PCM Audio File on SPK ... 43
Fig. 15: PCM Audio file on the uplink speech channel .. 45
Fig. 16: AT#SPCM & DTMF .. 46
Fig. 17: Local SPK Plays a Local External Stream ... 48
Fig. 18: Play a Stream on Far-End Device ... 49
Fig. 19: Single Ended Input Amplifier .. 51
Fig. 20: Differential Input Amplifier ... 51
Fig. 21: AC Coupling Capacitors ... 52
Fig. 22: Unbalanced Bias Circuitry ... 52
Fig. 23: Balanced Bias Circuitry ... 53
Fig. 24: ECM ... 55
Fig. 25: ECM-FET Schematic Block ... 56
Fig. 26: Electret Microphones .. 57
Fig. 27: Unbalanced Microphone Biasing Circuitry .. 58
Fig. 28: Single Ended Output Amplifier .. 59
Fig. 29: Differential Output Amplifier ... 59
Fig. 30: AEC of First Generation: Echo Chain .. 62
Fig. 31: Position of Microphone-Speaker System ... 63
Fig. 32: Threshold Echo Loss Behavior .. 64
TABLES LIST

Tab. 1: Modules Series and AT#PSET Command .. 19
Tab. 2: DTMF Tones .. 23
Tab. 3: Modules Series & AT#DTMF Command .. 25
Tab. 4: Modules Series & AT#CPUMODE Command .. 25
Tab. 5: Modules Series & AT#DTMF=3 Command ... 26
Tab. 6: AEC of First Generation & Modules Module Series .. 28
Tab. 7: AEC of Second Generation & Modules Series ... 31
Tab. 8: AT#SPCM Parameters ... 34
Tab. 9: Local SPK Plays a Local External PCM Stream .. 35
Tab. 10: Play a PCM Stream on Far-End Device ... 37
Tab. 11: Play a PCM Stream on Local SPK and Far-End Device 38
Tab. 12: PCM Stream Coming from Local MIC ... 39
Tab. 13: Remote Audio Signal from Downlink to Output Serial Line 40
Tab. 14: From MIC to Output Serial Line ... 41
Tab. 15: RX and TX PCM Streams .. 42
Tab. 16: Modules Series & AT#APLAY Command .. 43
Tab. 17: Modules Series & AT#SPCM Command ... 46
Tab. 18: AT#SAMR Parameters ... 47
Tab. 19: Local SPK Plays a Local External Stream .. 48
Tab. 20: Play a Stream on Far-End Device .. 49
Tab. 21: Modules Series & Audio Paths ... 50
Tab. 22: ECM Electrical Characteristics ... 56
Tab. 23: Audio Profile Parameters Ranges .. 60
Tab. 24: Basic AEC Audio Profiles ... 60
Tab. 25: Audio Profile: Office, Open Air, Small/Medium Car 61
1 INTRODUCTION

1.1 Scope

Scope of this document is to give an overview of the audio section of the Telit's modules, and provides examples about the use of the AT commands related to the audio. The following topics are covered: HS/FS physical audio paths, I2C bus, digital voice interface, audio equalizer, sidetone, TTY, DTMF, acoustic echo canceller, audio streaming. The Appendix collects short descriptions about microphone, speaker, and audio profile parameters for AEC.

1.2 Audience

The present application note is intended for those users who want to know and properly configure the audio section of the Telit's modules.

1.3 Contact Information, Support

For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com

Alternatively, use:
http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:
http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements. Telit appreciates feedback from the users of our information.
1.4 Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.5 Related Documents

[3] Digital Voice Interface Application Note, 80000NT10004A
[4] HE/UE910, UL865 Digital Voice Interface Application Note, 80000NT10050A
[5] GE910 Family Digital Voice Interface Application Note, 80000NT10099A
[7] Telit eCall Solution Application Note, 80000NT10046A
[9] Audio Tuning for HandsFree Systems Application Note, 80464NT11417A

In the present guide is used the notation [x]/[y] to refer to documents of different series of modules. Refer to the document in accordance with the module you are using.
2 AUDIO SECTION OVERVIEW

The module receives the voice from the downlink in digital format, converts it in analog signal, and sends the converted voice to the speaker (SPK). The microphone (MIC) captures the voice in analog format; the module converts the voice in digital format, and sends it to the uplink. The Fig. 1 shows the main blocks of the audio section. The gray blocks are the items external to the module. The Customer Audio Interface block includes the customer devices used to interface the module with the transducers (SPK, MIC).

This document dedicates a chapter to each functional block of the Fig. 1. The chapter describes the AT commands used to set the block configuration, or gives you information on more detailed documents concerning the block.

Before using the AT commands described in these pages, it is required to enter the AT#SELINT=2 command to set the suitable AT command interface style. Refer to the AT Command Reference Guide of the module you are using to have detailed information on AT commands syntax and their parameters, see chapter 13.
Fig. 1: Main Functional Blocks of the Audio Section
3 AUDIO FRONT END

The module receives the voice, coming from the downlink, in digital format, and routes it to the Audio Front End. The AFE converts the digital voice in analog signal, and sends it to the speaker.

The microphone captures the voice, and routes it to the Audio Front End. The AFE transforms the analog voice in digital format, and sends it on the uplink.

Fig. 2: AFE Block Diagram

The AFE provides two operation modes, featuring a high quality DAC/ADC conversion with buffering stages, allowing the connection of external acoustic transducers.

- **In power-down mode:**
 all analog parts are powered down and all digital part clocks are switched off.
- **In audio mode:**
 all digital filters are connected to the interface buffers and the analog part is enabled.
3.1 HS/HF Physical Audio Paths

Refer to chapter 13 to know which modules series provide an Audio Front End with two physical audio paths. To distinguish the two physical audio paths the following historical acronyms are used:

- **HS** (HandSet) is the combined unit of microphone and earpiece used in a standard telephone, internal audio transducers.
- **HF** (HandsFree) is the name of equipment that can be used without hands during a call, external audio transducers.

You can use only one physical path at a time.

The two physical audio paths have different electrical characteristics. Refer to the Hardware User Guide of the module you are using to have detailed information.

For modules having only one physical audio path, AT#CAP=<n> is a dummy command, returns OK response and no actions are performed by the module. This solution was adopted for backward compatibility reasons.

Use the AT#CAP command to switch between the two audio paths. Two modes are available:

- **Software**
- **Hardware**

Software mode

\[
\text{AT#CAP=2} \rightarrow \text{Use software mode to select HS audio path} \\
\text{OK} \\
\text{AT#CAP=1} \rightarrow \text{Use software mode to select HF audio path} \\
\text{OK}
\]

Hardware mode

\[
\text{AT#CAP=0} \rightarrow \text{Use hardware mode to select audio path} \\
\text{OK}
\]

After entering the previous command, select the audio path by means of the AXE pin:

- **AXE pin = HIGH** to select HS audio path.
- **AXE pin = LOW** to select HF audio path.
1) You can switch between the audio paths also during a call. When hardware mode is not used, AXE pin can be unconnected.

2) Several AT commands described in this document contain the couple of characters “HS” or “HF” to distinguish the two physical audio paths on which the commands work. In the next pages, to avoid the repetition of the same command working on different audio path, will be used the following rule: the “x” character is “S” for HS path or “F” for HF path.

3) For the modules without HF audio path, the Hands Free Commands (x = F) are dummy commands. The commands return OK response and no actions are performed by the modules. This solution was adopted for backward compatibility reasons.

Use the following AT command to set the SPK analog gain:

```
AT#HxRECG=<level>
OK
```

Use the following AT command to set the MIC analog gain:

```
AT#HxMICG=<level>
OK
```

1) The commands above work only on AFE block (refer to Fig. 2). DVI block is not affected.

2) Refer to the Hardware User Guide of the module that you are using to have information on the electrical characteristics of the two couples of input/output (MIC/SPK) lines.

The following Open Audio Loop command is used only for testing.

```
AT#OAP= [<mode>]
```
4 I2C BUS

Use the I2C bus to configure the Audio Codec internal registers. The Audio Codec is included in the Customer Audio Interface block. Refer to Fig. 1.

The documents [3], [4], [5], and [6] give information on the physical I2C bus, and examples of the AT commands used to configure the Audio Codec internal registers. Refer to the document in accordance with the module that you are using, see chapter 13.
5 DIGITAL VOICE INTERFACE

Referring to Fig. 1: the module receives the voice coming from the downlink, in digital format, and routes it to an external Codec through the Digital Voice Interface (DVI); the Audio Codec decodes the voice and sends it to the speaker.

The microphone captures the voice; the Audio Codec transforms the analog voice in digital format and directs it to the DVI. The module receives the voice from the DVI, in digital format, and sends it on the uplink.

Telit’s modules provide a physical DVI interface based on the standard I2S bus. Before establishing a voice call, you must select one of the two configurations shown in the figure below by means of the suitable AT commands.

![Diagram of Digital Voice Interface](image)

Fig. 3: Master and Slave Configuration

The documents [3], [4], [5], and [6] give information on the physical DVI bus and examples of the AT commands used to set the required configuration; refer to the document in accordance with the module that you are using, see chapter 13.
6 AUDIO EQUALIZER

The Audio Equalizer shown in Fig. 1 includes two sections, one dedicated to the SPK transducer and the other to the MIC transducer. Each section includes a Digital Gain Buffer and a Biquad Filter. The following sub-chapters describe the AT commands used to manage digital gain and filtering.

6.1 Digital Gain Control

The first two parameters of the AT#PSET command set the digital gains of the SPK and MIC transducers. See also chapter 14.4.

\[\text{AT#PSET=<scal_in>,<scal_out>,...} \]

The table below shows the modules series supporting the AT#PSET command.

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>Modules Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, 13, 16</td>
<td>Tab. 1: Modules Series and AT#PSET Command</td>
</tr>
</tbody>
</table>

6.2 Biquad Audio Filter

The AT commands below configure the Biquad filters connected to SPK and MIC transducers. Refer to documents [1][2] to have detailed information on their parameters. Here are the AT commands to configure respectively the MIC and SPK transducer filters:

\[\text{AT#BIQUADIN} \]
\[\text{AT#BIQUADOUT} \]

Here are the AT commands to configure respectively the MIC and SPK transducer extended filters:

\[\text{AT#BIQUADINEX} \]
\[\text{AT#BIQUADOUTEX} \]

See Applicability table.
7 AFE/DVI DIGITAL GAINS & SIDETONE

7.1 AFE/DVI Digital Gains
The command below sets up the SPK digital volume level, refer to Fig. 1:
 \texttt{AT+CLVL=<vol>}

 If the used module provides two audio paths (HS and HF), the volume level does not change even if the audio path is changed.

 Enable/disable the global muting of the speaker audio line.
 \texttt{AT#SPKMUT=<n>}

 The microphone of the active path can be muted with the following AT command.
 \texttt{AT+CMUT=<n>}

7.2 Sidetone
The sidetone is the effect of sound picked up by the microphone and instantly introduced at a low signal level into the receiver (speaker). Refer to Fig. 1.

 The AT commands below use the following rule: the “x” character is “F” to configure the headset sidetone, “S” to configure the handset sidetone.

 The following AT commands enable/disable the handset or headset sidetone.
 \texttt{AT#SHxSD=<mode>}

 Check the current <mode> value.
 \texttt{AT#SHxSD?}

 Use the third parameter of the following AT command to set the digital tone attenuation.
 \texttt{AT#PSET=<scal_in>,<scal_out>,<side_tone_atten>,...}
8 TEXT TELEPHONE TYPEWRITER (TTY)

Fig. 4 shows a TTY device connected to the module; the TTY characters are coded using two tones: 1400 Hz and 1800 Hz. The GSM speech coder does not support these tones; the CTM modem, embedded in the module, makes them compatible with the speech coder. The CTM modem transforms the two unsupported TTY tones into four tones: 400Hz, 600Hz, 800Hz, and 1000Hz. The speech coder can manage the four tones. The TTY device is connected to the module using one of the two physical audio paths: HS or HF, refer to chapter 3.1. This feature enables the transmission of the TTY data and voice jointly on the speech channel.

![TTY Device/Module Connection Diagram]

Example:

Connect the TTY device to the module. In accordance with the used physical audio connection, configure the audio path as indicated below. Assume to use software mode to select HF audio path, refer to chapter 3.1.

- `AT#CAP=1` \(\leftarrow\) Use software mode to select HF audio path
 - OK

- `AT+CLVL=5` \(\leftarrow\) Set the volume of the active audio path
 - OK

- `AT#HFMICG=4` \(\leftarrow\) Set the HF microphone input gain
 - OK

- `AT#SHFSD=0` \(\leftarrow\) Disable the side tone on HF audio output
 - OK

- `AT#SHFEC=0` \(\leftarrow\) Disable echo canceller function on HF audio path
 - OK

- `AT#SHFAGC=0` \(\leftarrow\) Disable automatic gain control on HF audio path
 - OK

- `AT#SHFNR=0` \(\leftarrow\) Disable noise reduction on HF audio path
 - OK

- `AT# TTY =?` \(\leftarrow\) Check the available values
 - #TTY: (0-1)
 - OK
AT# TTY? ➞ Check the current value
TTY: 0
OK

AT# TTY =1 ➞ Enable TTY functionality
OK

Now, the voice call can support jointly voice and TTY data.
9 DTMF TONES

The DTMF tones are used to control telephone systems. Using DTMF tones, the following characters can be sent: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,* and #. Each character is converted in a couple of frequencies as shown in the table below. The rows represent low frequencies, and the columns represent the high frequencies. For example, the character ‘1’ is sent as two sinusoidal tones of 697 and 1209 Hz.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>1209Hz</th>
<th>1336Hz</th>
<th>1477Hz</th>
<th>1633Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>697Hz</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>770Hz</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>852Hz</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>941Hz</td>
<td>*</td>
<td>0</td>
<td>#</td>
<td>D</td>
</tr>
</tbody>
</table>

Tab. 2: DTMF Tones

9.1 DTMF Local Generation

The following AT commands reproduce locally DTMF tones:

- AT#TONE=<tone>,<duration>
- AT#TONEEXT=<toneId>,<act>

9.2 DTMF Transmission on Uplink

In general, DTMF tones sent on the uplink are generated by the module using the suitable AT command or by an external device connected to the module through the MIC line. The following sub-chapters describe these two scenarios.

9.2.1 DTMF Generated by AT Command

Using the following AT command, the module sends the suitable command to the network infrastructure to generate on the other audio party the correspondent DTMF tone. The module embeds the DTMF command in a network message, and sends it during the voice call.

- AT+VTS=<dtmfstring>[,duration]

Example:

Check the range of supported values:

- AT+VTS=?
 (0-9,#,*,-A-D,P),(0-255)
 OK

Check the tone duration of the single character:

- AT+VTD?
 1
 OK

Dialing the number in voice mode:
ATD04x419x40y;
OK

Send the following sequence of tones:

AT+VTS=123456789
OK

Hang up the voice call:

ATH
OK

9.2.2 DTMF Generated by an External Source

An external source, typically a corded phone, generates DTMF tones, and sends them to the module using the input line. In turn, the module digitizes, encodes, and sends on the uplink the received couples of frequencies.

In the receiving device the signal would be reconstructed, but since the digital transmission of the voice channel is compressed and optimized for voice, this reconstruction depends on the kind of voice compression used for the transmission, and generally will not perfectly match the original signal.

There are four main types of compression for the voice channel: Full Rate, Half Rate, Enhanced Full Rate, and Adaptive Multi Rate. Only the first one has no distortion, while the other three offer a different trouble level.

Suggestion:
- do not generate DTMF signal by means of an external device
- use AT+VTS command to send DTMF signal
- set the sidetone off during DTMF signal sending

If an external DTMF source is used, the distortion due to voice channel compression should be accepted. The maximum input line level is:

1,03 Vpp / 365 mVrms @ Mic Gain = 0dB

If the level of DTMF signal is high, it causes saturation of the AFE amplifier and unwanted harmonic components are generated.

9.3 Embedded DTMF Decoder

Telit’s modules provide an embedded DTMF decoder that recognizes automatically the DTMF tones coming from the downlink speech channel, see Fig. 1. The embedded decoder sends, through the current AT interface, an URC reporting the last decoded digit with the following format:

#DTMFEV: x where x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, *, and #

The AT command AT#DTMF=1/0 enables/disables the DTMF decoder for modules series shown in Tab. 3.
For modules series shown in Tab. 4, you should issue the AT command `AT#CPUMODE=1` to improve the CPU clock and ensure the proper CPU performances for real time decoding.

See chapters 12.3, and 12.5.
9.3.1 Decoder Enhancement

You can improve the performance of the embedded decoder by means of the following AT commands:

- **AT#DTMF=3** command for modules series shown in table below.

<table>
<thead>
<tr>
<th>Platform Version ID4</th>
<th>10, 13, 16</th>
</tr>
</thead>
</table>

Tab. 5: Modules Series & AT#DTMF=3 Command

- **AT#DTMFCFG** command for tuning internal parameters.

Use both AT#DTMF and AT#DTMFCFG commands, where it is permitted, to reach a high overall decoding performance. To have more information refer to documents [1]/[2].

You should use the default values for standard applications. Use carefully the tuning.

4 See Applicability Table.
10 ACOUSTIC ECHO CANCELLER

Acoustic echo is formed when the sound emitted by the speaker is reflected from the walls, ceilings, floor, furniture, people, and so on back to the microphone. To overcome this phenomenon, the modules provide an Acoustic Echo Canceller (AEC). Refer to Fig. 1.

Telit’s modules provide two types of AEC, in accordance with the processor installed on them. The following terms distinguish the two types:

- AEC of first generation
- AEC of second generation

The three AT commands below are common to both types of AECs and affect AFE and DVI blocks.

\[
\begin{align*}
\text{AT#PRST} & \quad \text{Audio Profile Factory Configuration} \\
\text{AT#PSAV} & \quad \text{Audio Profile Configuration Save} \\
\text{AT#PSEL} & \quad \text{Audio Profile Selection}
\end{align*}
\]

Both AECs include the following three blocks (algorithms), see Fig. 5, and Fig. 6:

- Echo Canceller
- Automatic Gain Control
- Noise Reduction

The following AT commands enable/disable respectively the Echo Canceller, Automatic Gain Control, and Noise Reduction functions on the audio path currently used. If the module provides only one path, does not matter if \(x = S \) or \(x = F \), the command works on the single physical path. Refer to chapter 13 to see the number of physical path provided by your module.

\[
\begin{align*}
\text{AT#SHxEC=<mode>} \\
\text{AT#SHxAGC=<mode>} \\
\text{AT#SHxNR=<mode>}
\end{align*}
\]
10.1 AEC of First Generation

The Fig. 5 shows the basic blocks of an AEC of first generation, and Tab. 6 shows the modules series equipped with such type of AEC.

![Diagram of Acoustic Echo Canceller of First Generation](image)

Fig. 5: Acoustic Echo Canceller of First Generation

<table>
<thead>
<tr>
<th>Platform Version ID⁵</th>
<th>10</th>
</tr>
</thead>
</table>

Tab. 6: AEC of First Generation & Modules Module Series

Here are the blocks (algorithms) building the Acoustic Echo Canceller:

- Echo Canceller (EC)
- Automatic Gain Control (AGC)
- Noise Reduction (NR)
- Comfort Noise Injection (TXCNI)

The first three algorithms are configured by means of the following AT command.

AT#PSET

This command has several parameters to configure the algorithms; the next sub-chapters describe which parameters are dedicated to each one of the algorithm. Chapter 14.4 gives some examples of parameters values.

EC, AGC, and NR configurations are not allowed if Active Audio Profile "0" is active.

⁵ See Applicability Table.
10.1.1 Echo Canceller
Echo Canceller uses a FIR filter. It reflects the inverse of the acoustic coupling between speaker and microphone. Echo Canceller is controlled through the AT#PSET command, the used parameters are:

- `<adaption_speed>`: Adaptation Speed.

 It represents the capacity of the algorithm to adapt to the variation of echo characteristics; higher value means faster adaptation but less accurate convergence and conversely.

- `<filter_length>`: FIR Filter Length.

 It represents the impulse response length to build the estimated filter, thus it is the maximum cancelable echo delay.

- `<rxtxrelation>`: Power Relation RX  TX.

 This value is used to tell the algorithm about the real world signal power relation between speaker and microphone and their acoustic coupling.

10.1.2 Automatic Gain Control
Automatic Gain Control is based on the measurement of the power relation between RX and TX signals. The measurement result will indicate to attenuate or not the TX signal, this block can be called “Automatic Reduction of Gain”.

The amount of the attenuation is controlled by means of the AT#PSET command. The parameters dedicated to the AGC are:

- `<add_atten>`: Additional Attenuation.

 It represents the additional attenuation added to the attenuation calculated by the AGC.

- `<min_atten>`: Minimum Attenuation.

 It represents the minimal attenuation in spite of lower calculated attenuation.

- `<max_atten>`: Maximum Attenuation.

 It represents the maximum attenuation in spite of higher calculated attenuation.

AGC threshold for Double Talk detection and digital gain in Uplink.

AT#HFCFG
10.1.3 Noise Reduction

NR filter is based on the spectral weighting algorithm implemented with sub-bands from 300Hz to 4000Hz. It filters background noise introduced by the environment (e.g., noise of car engine) and the residual noise from the impulse response not removed by the Echo Canceller.

Noise Reduction filter is controlled by means of the AT#PSET command, the parameters dedicated to the NR are:

- `<nr_atten>` Noise Max Attenuation.
 It is the maximum attenuation that can be introduced by the NR algorithm.
- `<nr_w_0>` Noise Weighting Factor Band 300-500Hz.
 A higher value causes better noise reduction but also a higher distortion of the speech signal.
- `<nr_w_1>` Noise Weighting Factor Band 500-4000Hz.
 A higher value causes better noise reduction but higher distortion of the speech signal.

10.1.4 Comfort Noise Injector

Here is the command to enable, disable, and configure the Comfort Noise Injection (TXCNI).

Refer to document [1].

```
AT#TXCNI=<support>,<gain>,<floor>
```
10.2 AEC of Second Generation

The Fig. 6 shows the basic blocks of an AEC of second generation, and Tab. 7 shows the modules series equipped with such type of AEC, see also chapter 13. To have more detailed information on the AEC tuning refer to document [9].

Fig. 6: Acoustic Echo Canceller of Second Generation

Here are the blocks (algorithms) building the Acoustic Echo Canceller:

- Echo Canceller (EC)
- Automatic Gain Control (AGC)
- Noise Reduction (NR)
- Comfort Noise Injection (TXCNI)
- Spectral Echo Canceller (SER)

The AEC of second generation is configured by means of the following Echo Reducer Configuration AT command: AT#ECHOCFG.

After you have issued the command, the “>” prompt is displayed on the terminal. The command is ready to accept your parameters values. For more information on AT command syntax refer to document [2].

Echo Reducer Configuration is not allowed if Active Audio Profile ‘0’ is active. AT#ECHOCFG command returns ERROR message, see AT#PSEL command.

6 See Applicability Table.
AT#ECHOCFG=0
>the command expects 39 user parameters values

AT#ECHOCFG=1
>the command expects user parameter value corresponding to index 1

AT#ECHOCFG=39
>the command expects user parameter value corresponding to index 39

AT#ECHOCFG=14,15,16,34
>the command expects user parameters values corresponding to indexes 14, 15, 16, 34

As stated at the beginning of this chapter, refer to document [9] to have detailed information on the AEC tuning.
11 ECALL

To have information on the eCall topic refer to document [7].
12 AUDIO STREAMING

Telit’s modules provide specific AT commands to send and receive PCM stream through:

- GSM voice channels (Uplink, Downlink)
- Input/Output Serial lines

Refer to the AT Command Reference Guide [1]/[2] of the module you are using to have detailed information on AT commands syntax and their parameters. The following sub-chapters describe the available scenarios in accordance with the used AT commands and their parameters configurations.

12.1 AT#SPCM Command

AT#SPCM command works with the following voice channels:

- Full Rate
- Half Rate
- Enhanced Full Rate

The command is independent from the codec of the used voice channel. Here is its syntax:

`AT#SPCM=<mode>,<dir>`

The table below summarizes the couples of parameters supported by the command. Each couple defines a scenario.

<table>
<thead>
<tr>
<th><dir></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chapter 12.1.1</td>
<td>Chapter 12.1.2</td>
<td>Chapter 12.1.3</td>
<td>Not supported</td>
</tr>
<tr>
<td>2</td>
<td>Chapter 12.1.4</td>
<td>Chapter 12.1.5</td>
<td>Chapter 12.1.6</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Tab. 8: AT#SPCM Parameters

The modules belonging to the Platform Version identified by ID=127 provide the AT#SPCM command with three parameters: <mode>,<dir>,<format>. The last one configures the number of bit of the PCM format: 0 → 8 bit, 1 → 16 bit.

12.1.1 Play Local PCM Stream on Local APK

Here is the AT#SPCM command parameters configuration to play a PCM stream on local SPK. The PCM stream comes from a local external source connected to the module through an input serial line, refer to Fig. 7.

7 See Applicability Table.
AT#SPCM=1,0

Tab. 9 summarizes the scenarios in accordance with the used modules series. You must establish a voice call.

Fig. 7: Local SPK Plays a Local External PCM Stream

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>Uplink channel:</th>
<th>Downlink channel:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>OFF</td>
<td>ON</td>
<td>Local External PCM Stream</td>
</tr>
<tr>
<td>12</td>
<td>ON</td>
<td>ON</td>
<td>Local External PCM Stream +</td>
</tr>
<tr>
<td>13</td>
<td>OFF</td>
<td>ON</td>
<td>Remote Audio Signal</td>
</tr>
<tr>
<td>16</td>
<td>OFF</td>
<td>ON</td>
<td>Local External PCM Stream +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Remote Audio Signal</td>
</tr>
</tbody>
</table>

Tab. 9: Local SPK Plays a Local External PCM Stream
See the examples below.

Example 1: the voice call is not established. Only the PCM stream, coming from a local external source, is played by the local SPK.

```
AT#SPCM=1,0  \rightarrow Play on local SPK the PCM stream coming from the serial line.
CONNECT
```

Now, the user can send the PCM stream on the serial line.

```
+++  \rightarrow Issue the escape sequence to enter the command mode.
NO CARRIER
```

Example 2: the voice call is established. The PCM stream, coming from a local external source, is played by the local SPK. Refer to Tab. 10 to see if the downlink channel of the module you are using is enabled. If the downlink channel is ON, also the remote voice is played by the SPK.

```
ATD<phone number>;  \rightarrow Establish a voice call
OK

AT#SPCM=1,0  \rightarrow Play on local SPK the PCM stream coming from the serial line
CONNECT
```

Now, the user can send the PCM stream on the serial line.

```
+++  \rightarrow Issue the escape sequence to enter the command mode.
NO CARRIER
```
12.1.2 Play a PCM Stream on a Far-End Device

Here is the AT#SPCM command parameters configuration to play a PCM stream on a far-end device. The PCM stream comes from a local external source connected to the module through an input serial line, refer to Fig. 8.

AT#SPCM=1,1

Tab. 10 summarizes the scenarios in accordance with the used modules series. You must establish a voice call.

Tab. 10: Play a PCM Stream on Far-End Device
12.1.3 Play a PCM Stream on a Far-End Device and Local SPK

Here is the AT#SPCM command parameters configuration to play a PCM stream on local SPK, and send it to uplink audio channel. The PCM stream comes from a local external source connected to the module through an input serial line, refer to Fig. 9.

AT#SPCM=1,2

Tab. 11 summarizes the scenarios in accordance with the used modules series. You must establish a voice call.

![Diagram](image)

Fig. 9: Play a PCM Stream on Far-End Device and Local SPK

<table>
<thead>
<tr>
<th>Far-End Device plays:</th>
<th>Local SPK plays:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Version ID<sup>10</sup></td>
<td>Uplink channel:</td>
</tr>
<tr>
<td>10</td>
<td>Local Ext. PCM Stream + Local Audio Stream</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 11: Play a PCM Stream on Local SPK and Far-End Device

¹⁰ See Applicability Table.
12.1.4 Convert Local Audio Signal from MIC into Local PCM Stream

Here is the AT#SPCM command parameters configuration to receive a voice signal from local MIC.

Then, the module converts the voice signal into a PCM stream and routes it to an output serial line. Refer to Fig. 10.

AT#SPCM=2,0

Tab. 12 summarizes the scenarios in accordance with the used modules series. You must establish a voice call.

Fig. 10: PCM Stream Coming from Local MIC

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>Uplink channel</th>
<th>Downlink channel</th>
<th>On output serial line is available</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ON</td>
<td>ON</td>
<td>PCM Stream from local MIC</td>
</tr>
<tr>
<td>13</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

11 See Applicability Table.
12.1.5 PCM Stream on Output Serial Line

Here is the AT#SPCM command parameters configuration to receive a remote audio signal from the downlink speech channel. The module converts the remote audio signal into PCM stream, and then routes it to an output serial line. Refer to Fig. 11.

AT#SPCM=2,1

Tab. 13 summarizes the different scenarios in accordance with the used modules series. You must establish a voice call.

![Diagram showing PCM Stream on Output Serial Line]

Fig. 11: Remote Audio Signal from Downlink to Output Serial Line

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>Uplink channel:</th>
<th>Downlink channel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>OFF</td>
<td>Remote Audio Signal</td>
</tr>
<tr>
<td>12</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 13: Remote Audio Signal from Downlink to Output Serial Line
12.1.6 From MIC to Output Serial Line

Here is the AT#SPCM command parameters configuration to receive a voice signal from local MIC. Then, the module converts the voice signal into PCM stream, and then routes it to an output serial line. Refer to Fig. 12.

AT#SPCM=2,2

This configuration is obsolete, use AT#SPCM=2,0.

Tab. 14 summarizes the scenarios in accordance with the used modules series. You must establish a voice call.

![Fig. 12: From MIC to Output Serial Line](image)

Tab. 14: From MIC to Output Serial Line

<table>
<thead>
<tr>
<th>Platform Version</th>
<th>Uplink channel</th>
<th>Downlink channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>16</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

13 See Applicability Table.
12.1.7 RX/TX PCM Streams

Here is the AT#SPCM command parameters configuration to send a TX PCM stream on the uplink speech channel, and receive a remote audio signal on the downlink speech channel. Refer to Fig. 13.

AT#SPCM=3,1

Tab. 15 summarizes the scenarios in accordance with the used modules series. You must establish a voice call.

![Diagram of RX and TX PCM Streams](image)

Fig. 13: RX and TX PCM Streams

<table>
<thead>
<tr>
<th>Far-End Device plays:</th>
<th>Local SPK plays:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Version ID¹⁴</td>
<td>Uplink channel:</td>
</tr>
<tr>
<td>12</td>
<td>TX PCM Stream + Loc. Audio Signal</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 15: RX and TX PCM Streams

¹⁴ See Applicability Table.
12.2 AT#APLAY Command

The AT#APLAY command allows the user to send a PCM audio file to the speaker or uplink speech channel. The PCM audio file is stored in the module memory. The modules series, shown in the table below, provide several AT commands managing PCM audio files; refer to documents [1][2].

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>13</th>
</tr>
</thead>
</table>

Tab. 16: Modules Series & AT#APLAY Command

12.2.1 PCM Audio File Played on Speaker

Here is the AT#APLAY command parameters configuration to send a PCM audio file to the speaker. The extension of the file is "pcm".

\[
\text{AT#APLAY}=1,0,"\text{file_name.pcm}\"
\]

The establishment of a voice call is not required; the module is in idle mode.

![PCM Audio File on SPK](image)

Fig. 14: PCM Audio File on SPK

\[15\] See Applicability Table.
Here is an example.

Enter the command below. After the command responded with the "CONNECT" prompt, you can send the PCM audio file using the Send File option provided by the Terminal tool (use RAW ASCII protocol). If the transfer has been successfully ended, the module returns the "OK" message.

If the transferred PCM audio file is stored successfully, the module sends the following Unsolicited Result Code: #ASENDEV: 0.

- The first parameter is the name of the destination file that will be stored in the memory of the module. Write "pcm" file extension in lowercase characters and enclose the file name in straight quotes (string type).
- The second parameter is the size of the file expressed in bytes. Use the "Properties" dialog box of Windows to know the file size in bytes.

```
AT#ASEND="GOOFY.pcm",320000
CONNECT
OK

#ASENDEV: 0        ← URC notifying that the file storing is done successfully.

AT#ALIST
#ALIST: "GOOFY.pcm",320000,F238
← list the PCM files stored in the module.

AT#APLAY=1,0,"GOOFY.pcm"
OK

#APLAYEV: 0        ← URC notifying that the playing is ended.

AT#ADELF="GOOFY.pcm"
OK
← delete the selected PCM file stored in the module.
```
12.2.2 PCM Audio File Sent on Uplink

Here is the AT#APLAY command parameters configuration to send a PCM Audio file on the uplink speech channel. The extension of the file is "pcm".

AT#APLAY=1,1,"file_name.pcm"

You must establish a voice call.

This feature is in progress.

Fig. 15: PCM Audio file on the uplink speech channel
12.3 AT#SPCM Command & DTMF

Telit’s modules allow the user to start the execution of the AT#SPCM command while receiving and decoding DTMF tones from the downlink speech channel. The table below shows the modules series that provide this feature.

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>16</th>
</tr>
</thead>
</table>

Tab. 17: Modules Series & AT#SPCM Command

Fig. 16 shows the Application Processor connected to the module by means two input/output serial lines. The serial lines are connected to two AT commands parser instances which decode and executes the entered AT commands.

1) On the upper serial line, the Application Processor sends the AT commands to initialize the DTMF decoder, and receives the related URC when the remote side sends a DTMF.

2) On the lower serial line, the Application Processor sends the AT#SPCM command after receiving the expected DTMF URC.

To implement this configuration can be used the CMUX Protocol, refer to document [8].
12.4 AT#SAMR Command

AT#SAMR command works with the following voice channel:

- Adaptive Multi Rate

Here are the supported codec:

- AMR 4.75 (default)
- AMR 5.15
- AMR 5.95
- AMR 6.70
- AMR 7.40
- AMR 7.95
- AMR 10.2
- AMR 12.2

Here is the syntax of the command:

`AT#SAMR=<mode>,<dir>`

The table below summarizes the couples of parameters supported by the command. Each couple defines a scenario.

<table>
<thead>
<tr>
<th><dir></th>
<th><mode></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Chapter 12.4.1</td>
</tr>
<tr>
<td>1</td>
<td>Chapter 12.4.2</td>
</tr>
</tbody>
</table>

Tab. 18: AT#SAMR Parameters
12.4.1 Play Local AMR Stream on Local SPK

Here is the AT#SAMR command parameters configuration to play a stream on local SPK. The source is an AMR stream coming from a local external device connected to the module through an input serial line. Refer to Fig. 17.

\[\text{AT#SAMR}=1,0 \]

Error! Reference source not found. shows the data running on the uplink and downlink channels in accordance with the AT#SAMRCFG command, when a voice call is established.

Fig. 17: Local SPK Plays a Local External Stream

<table>
<thead>
<tr>
<th>Platform Version ID(^\text{17})</th>
<th>AT#SAMRCFG</th>
<th>Uplink</th>
<th>Downlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>AT#SAMRCFG=0,0,0,1</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>AT#SAMRCFG=0,0,1,0</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>AT#SAMRCFG=0,0,0,1</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>AT#SAMRCFG=0,0,0,0 (default)</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

Tab. 19: Local SPK Plays a Local External Stream

\(^\text{17}\) See Applicability Table.
12.4.2 Play an AMR Stream on a Far-End Device

Here is the AT#SAMR command parameters configurations to play a stream on a far-end device. The source is an AMR stream coming from a local external device connected to the module through an input serial line. Refer to Fig. 18.

AT#SAMR=1,1

Error! Reference source not found. shows the data running on the uplink and downlink channels in accordance with the AT#SAMRCFG command, when a voice call is established.

AT#SAMRCFG

<table>
<thead>
<tr>
<th>Platform Version ID</th>
<th>AT#SAMRCFG</th>
<th>Far-End Device plays:</th>
<th>Uplink</th>
<th>Downlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>AT#SAMRCFG=0,0,1,1</td>
<td>Local external stream</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>13</td>
<td>AT#SAMRCFG=0,0,1,0</td>
<td>Local external stream</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>16</td>
<td>AT#SAMRCFG=0,0,0,1</td>
<td>Local external stream</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>AT#SAMRCFG=0,0,0,0</td>
<td>Local external stream</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

Tab. 20: Play a Stream on Far-End Device

12.5 AT#SAMR Command & DTMF

You can use the AT#SAMR commands in the same way is used AT#SPCM command, see chapter 12.3.

18 See Applicability Table.
13 MODULES SERIES AND AUDIO PATHS

Tab. 21 shows the audio paths provided by the modules series covered by the document. In addition, shows the related DVI documents and AT Command Reference Guides, see chapter 1.5.

<table>
<thead>
<tr>
<th>Platform Version ID(^{19})</th>
<th>Audio paths</th>
<th>DVI document</th>
<th>AT Ref. Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>HS, HF</td>
<td>[3]</td>
<td>[1]</td>
</tr>
<tr>
<td>13</td>
<td>HF</td>
<td>[5]</td>
<td>[1]</td>
</tr>
<tr>
<td>16</td>
<td>HS, HF</td>
<td>[5]</td>
<td>[1]</td>
</tr>
<tr>
<td>12</td>
<td>HS</td>
<td>[4]</td>
<td>[2]</td>
</tr>
</tbody>
</table>

Tab. 21: Modules Series & Audio Paths

\(^{19}\) See Applicability Table.
14 APPENDIX

In this Annexes section are collected detailed descriptions of some topics introduced in the previous chapters.

14.1 Microphone Line Guidelines

14.1.1 Single Ended Input Amplifier

The figure below shows a basic example of single ended input microphone amplifier (unbalanced MIC buffer).

![Fig. 19: Single Ended Input Amplifier](image)

This configuration has this drawback: any noise signal appearing on input terminal is amplified as the desired signal coming from the MIC.

The advantage is that it has only one input signal therefore it requires less space on a PCB, and solves critical PCB space problems but, in most cases, introduces the need of strong shielding.

14.1.2 Differential Input Amplifier

The figure below shows a basic example of a differential input microphone amplifier (balanced MIC buffer).

![Fig. 20: Differential Input Amplifier](image)

A differential input amplifier provides a Common Mode Rejection Ratio (CMRR): only the difference between the input terminals is amplified.
14.1.2.1 Practical Suggestions

Here is a list of rules concerning the PCB design for differential input amplifier (balanced MIC buffer) and mechanical rules for the MIC housing.

- Lay the differential PCB tracks close to each other from microphone to amplifier to improve EMI rejection.
- Lay the differential PCB tracks over a ground plane to shield them from EMI.
- Use equal AC coupling capacitors on both In+ and In- differential tracks. Ground the capacitor near the source to improve the common-mode noise cancellation, refer to figure below.

![AC Coupling Capacitors](image1)

Fig. 21: AC Coupling Capacitors

- Use, as RF rejection, equal shunt capacitors or series ferrite beads on both In+ and In- differential tracks.
- Use, if balanced circuitry, equal load resistors for differential source on both differential tracks, refer to Fig. 23. For ECM microphone refer to chapter 14.2.

![Unbalanced Bias Circuitry](image2)

Fig. 22: Unbalanced Bias Circuitry
Place a ground plane close (ideally beneath) the differential tracks. This provides a direct return path for RF signals to decrease coupling between audio and other signals.

Use for the microphone biasing voltage a dedicated voltage regulator and a capacitor multiply circuitry (if needed), refer to chapter 14.2.3.

Make sure that the microphone tracks in the PCB do not cross or run parallel to noisy tracks (especially the power line).

14.1.3 HandsFree

Here is a list of rules concerning the HandsFree system design with microphone fitted in the same case of the speaker.

- Use the maximum distance between microphone and speaker, at least 7 cm.
- Seal the rear side (no back cavity) of an omni-directional microphone type (typical application) to avoid unwanted signals; make divergent the microphone and speaker axes.
- Set the minimum internal gain of the module if you use an external microphone amplifier.

In a HandsFree system, the microphone and the speaker are far from module, driven by external amplifiers. When designing the external microphone amplifier you must take into account the voice attenuation, due to the distance between the talker and the microphone itself. In addition, you must consider that the microphone will pick up ambient noise.

To overcome these problems, it is preferable to set the gain of the microphone 10 dB lower than the calculated value for a “Nominal Sensitivity” see chapter 14.1.4.2. An increased voice volume of the talker, which will speak louder because of the ambient noise, will compensate the corresponding reduction in signal level.

Usually, the distance between the microphone and the talker in a car cabin is 40/50 cm. In these conditions, the attenuation is considered around 20 dB.
14.1.4 Definitions

14.1.4.1 Normal Spoken Condition

For a cellular phone, the “Normal Spoken” condition takes place when the talker mouth is about 7 cm far from the microphone. Under these conditions, the voice produces an acoustic pressure of -4.7 dBPa @ 1 kHz on the microphone membrane. During a call, this level varies according to the volume of the talker voice. Here is the typical dynamic range:

- The strongest voice level condition is when the talker is screaming: the signal increases by +20dB.
- The lowest voice level condition is when the talker is whispering: the voice level decreases by -50dB.

These limits must be considered for designing the external microphone amplifier.

14.1.4.2 Nominal Sensitivity

The “Nominal Sensitivity” is defined as follow:

- The output voltage level for a specified acoustic stimulus under specific load condition.

In the Microphone Manufacturer Data Sheet, the “Nominal Sensitivity” is expressed in dBV/Pa or in dBV/µbar. Because 0.1 Pa = 1 µbar, the difference between the two measuring units is:

$$\Delta = 20 \log_{10} 0.1 = -20\text{dB}$$

as example: -40 dBV/Pa = -60 dBV/µbar

14.1.4.3 Microphone Electrical Level

If the “Nominal Sensitivity” of a microphone is known, it is possible to calculate the voltage level on its pins under “Normal Spoken” condition. A microphone having the “Nominal Sensitivity” of -45 dBVrms/Pa will produce an electrical equivalent signal at its pins:

$$\text{Mic Level} = (-45) + (-4.7) = -49.7 \text{ dBV}_{\text{rms}}$$

$$\text{Mic Voltage} = 10^{(-49.7/20)} = 3.3 \times 10^{-3} \text{ V}_{\text{rms}}$$
14.2 Electret Microphone

14.2.1 Principle of Operation

The electret microphone is based on the electret material. It is a stable dielectric with a permanently embedded static electric charge, which will not decay for hundreds of years, due to the high resistance of the material. Its name comes from electrostatic and magnet. The Electret Microphone (ECM) is a type of condenser microphone whose audio pickup section has a structure of a condenser consisting of a diaphragm and an opposite back plate. Refer to Fig. 24. Usually a very high voltage (tens or hundreds volts) should be applied externally to polarize such a condenser. However, because the electric charge can be maintained in a polymer film by the electret effect, thereby the polarizing direct-current high voltage is eliminated. Therefore, it could offer the desired long-term stability and ultra-flat frequency response.

![Fig. 24: ECM](image)

The sound waves impinging on the diaphragm cause the capacitance between it and the back plate to change in sympathy.

14.2.2 Types

There are three ECM technologies, according to where the electret film is used:

- **Foil-type.** The diaphragm itself is made of an electret polymer film. This is the most common type, but offering also the lowest quality, since the electret material doesn't make a very good diaphragm.
- **Back-type.** An electret film is applied to the back plate of the microphone capsule and the diaphragm is made of a superior, uncharged material.
- **Front-type.** In this newer type, the back plate is eliminated, and the condenser is formed by the diaphragm and the inside surface of the capsule: the diaphragm is metalized and the electret film is adhered to the inside front cover.

Because the capacitance is relatively small, the electrical impedance is high and unmanageable; to overcome this, the metalized diaphragm is connected to the input of a FET to transform the impedance to a lower level suitable for feeding an amplifier via screened lead. The ECM can be thought as a voltage generator; by means of the FET it is converted in a current generator, see the figure and table below. The table lists some typical ECM electrical characteristics; verify on microphone manufacturer Data Sheet the characteristics of your ECM.
Fig. 25: ECM-FET Schematic Block

<table>
<thead>
<tr>
<th>Nominal sensitivity</th>
<th>-45dBVrms/1Pa (+/- 3dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line coupling</td>
<td>AC</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>2V</td>
</tr>
<tr>
<td>Range of Using Voltage</td>
<td>(1÷10) V</td>
</tr>
<tr>
<td>Consumption Current</td>
<td>(150 + 500) μA</td>
</tr>
<tr>
<td>Impedance</td>
<td>2.2KΩ</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>56dB @ 1KHz/1Pa (A curve)</td>
</tr>
<tr>
<td>EMI capacitor between terminals</td>
<td>10pF, 33pF</td>
</tr>
</tbody>
</table>

Tab. 22: ECM Electrical Characteristics

An ECM usually needs a biasing voltage to work properly. Referring to Fig. 25: the R_{load} resistor polarizes the FET and converts its current signal in a V_{out} voltage signal:

$$V_{out} = G_{forward} \times R_{load} \times V_{in}$$

Increment the R_{load} resistor value to increment the V_{out} voltage. The saturation should be avoided.

ECMs have a hot lead where the positive biasing must be connected; the cold lead is connected to the capsule. If the polarity of the bias is reversed, then the microphone will not work properly, its sensibility decreases about of 30 dB.
The microphone leads and the PCB tracks work as antenna and pick up the module RF. The FET rectifies the RF and amplifies the rectified signal that cannot be more isolated from the right audio signal. To avoid this phenomenon, the best microphones contain two small value capacitors inside the capsule (one for 900MHz and the second for 1800-1900MHz band), which act as RF bypass to short-circuit the RF frequency components to ground, avoiding rectification phenomena, see Fig. 25.

To improve the shielding action, the cold lead is directly connected to its shield, and a lot of ground vias improve the effect of the capacitors included in the capsule, see Fig. 25. The Fig. 26 shows, on the left side, the best shielded Electret Microphone.

When the shielding action is not enough, you hear a sort of noise (called buzzing), whose level depends from TX power.

![Fig. 26: Electret Microphones](image)
14.2.3 Practical Suggestions

The figure below shows an example of the unbalanced microphone biasing circuitry. Here is a list of suggestions:

- Get the supply biasing voltage from a dedicated voltage regulator (U1) to eliminate the noise present on the power lines; this regulator can be the same for all the audio sections.
- Drive the microphone by a capacitor multiply circuit (R1-Q1-C2).
- Use a shielded cable if the microphone is wire connected.
- Use C4 and C3 capacitors equal or greater than 200nF to obtain a cut frequency lower than 300Hz. In addition, C3 should be connected to GND1, which should be equipotential with GND2.

![Unbalanced Microphone Biasing Circuitry](image)

Fig. 27: Unbalanced Microphone Biasing Circuitry
14.3 Speaker Line Guidelines

14.3.1 Single Ended (SE)
A Single Ended Output Amplifier should be AC coupled to the load, as shown in Fig. 28. Without the output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and permanent speaker damage. It is an obsolete configuration.

![Fig. 28: Single Ended Output Amplifier](image)

This configuration needs only one active track, the routing of signal line requires less PCB space.

14.3.2 Differential (BTL)
A Differential Output Amplifier provides a differential signal output, where the Vout- side is the mirror image of the Vout+ side, without any AC coupling output capacitor, as shown in Fig. 29. In the differential drive, while one side of the amplifier is slewing up the other side is slewing down, and vice versa: the voltage swing on the load is doubled.

![Fig. 29: Differential Output Amplifier](image)
14.4 Audio Profile Parameters for AEC of the First Generation

The table below shows the values ranges of the AT#PSET command parameters, highlighting that the parameters affects three main audio features: Audio Equalizer, Sidetone, and AEC of the first generation. Refer to Fig. 1 to relate the command parameters with the affected audio section blocks, and Tab. 6 to see which modules families support the AT#PSET command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Equalizer</td>
<td>Digital Input Scaling</td>
<td>(-6÷+6) dB</td>
<td>1dB</td>
</tr>
<tr>
<td></td>
<td>Digital Output Scaling</td>
<td>(-6÷+6) dB</td>
<td>1dB</td>
</tr>
<tr>
<td>Sidetone</td>
<td>Sidetone Attenuation</td>
<td>(0÷+24) dB, -1 = OFF</td>
<td>1dB</td>
</tr>
<tr>
<td>EC</td>
<td><adaption_speed></td>
<td>Adaption Speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td><filter_length></td>
<td>FIR Filter Length</td>
<td></td>
</tr>
<tr>
<td></td>
<td><rxtxrelation></td>
<td>Power Relation RX→TX</td>
<td></td>
</tr>
<tr>
<td></td>
<td><nr_atten></td>
<td>Noise Max Attenuation</td>
<td></td>
</tr>
<tr>
<td></td>
<td><nr_w_0></td>
<td>Noise Weighting Factor Band 300-500Hz</td>
<td>0=lower weight</td>
</tr>
<tr>
<td></td>
<td><nr_w_1></td>
<td>Noise Weighting Factor Band 500-4000Hz</td>
<td>0=lower weight</td>
</tr>
<tr>
<td>AEC</td>
<td>AGC</td>
<td>Gain Additional Attenuation</td>
<td>1dB</td>
</tr>
<tr>
<td>NR</td>
<td>GAIN_Minimum Attenuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGC</td>
<td>Gain Maximum Attenuation</td>
<td>(0÷+90) dB</td>
<td>1dB</td>
</tr>
</tbody>
</table>

Tab. 23: Audio Profile Parameters Ranges

Modules provide one standard and three extended basic AEC profiles, corresponding to four basic environments. Refer to table below.

<table>
<thead>
<tr>
<th>Audio Profile</th>
<th>Audio Pro. Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>office</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>open air</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>small /medium car</td>
</tr>
</tbody>
</table>

Tab. 24: Basic AEC Audio Profiles

All parameters are stored in NVM as default factory profiles, usable as they are or as a starting setup. Every profile can be used on both audio physical paths: HS, and HF.
Gain Minimum Attenuation | 0 | 0 | 0
Gain Maximum Attenuation | 12 | 18 | 24

| Tab. 25: Audio Profile: Office, Open Air, Small/Medium Car |

14.4.1 Configuration of an AEC of the First Generation

This chapter provides basic suggestions to configure an AEC of first generation, refer to Fig. 5.

The geometry of the used speaker-microphone system is a very important aspect of the AEC parameters tuning, therefore as first step:

- decide the spatial setup of the speaker-microphone system

To obtain the right speech levels:

- Set the internal microphone gain as low as possible by means of the audio AT commands;
- Use an external amplifier if the speaker requires additional gain; see Customer Audio Interface in Fig. 1;
- Set only internal gain for fine-tuning of the overall downlink gain. Use the audio AT commands.

Here is a list of tuning actions according to the used audio interface (AFE or DVI). Perform these actions only if needed:

AFE interface, tune:

- internal analog gains provided by the Audio Front End (AFE), see chapter 3.1;
- internal digital gains provided by the Audio Equalizer, see chapter 6.1;
- Biquad audio filters, provided by the Audio Equalizer, to equalize the transducers, see chapter 6.2.

DVI interface, tune:

- internal digital gains provided by the Audio Equalizer, see chapter 6.1;
- Biquad audio filters, provided by the Audio Equalizer, to equalize the transducers, see chapter 6.2.

Sidetone is always a harmful effect. In HandsFree application, it must be disabled to help Echo Canceller action.

EC: the max echo path

EC algorithm accepts an echo delay value equal or less than 50 ms, see chapter 10.1.1, and <filter_length> parameter in Tab. 23. For a good cancellation, it is enough to take into account only the main echo coming from the near reflections.

The following expression provides the max echo path:

\[L = t \times v_s = 0.05[s] \times 340 \left[\frac{m}{s} \right] = 17m \]
EC: estimation of the RXTX Threshold

EC algorithm estimates the RX (Pdownlink) and TX (Puplink) signals to accomplish the Echo Canceller activity. Refer to Fig. 30, and Tab. 24. Because the algorithm does not take automatically in account the speaker amplifier gain as well as losses in the air path, this information must be passed to EC.

The <rxtxrelation> parameter (Power Relation RX TX) of the AT#PSET command is used to configure the EC algorithm in accordance with the current scenario.

In the following example is used the AFE interface; the gains values of the figure below are reported only as examples.

Fig. 30: AEC of First Generation: Echo Chain
The EC algorithm can compare the two power values P_{downlink} and P_{uplink} only if the following relation is respected:

$$P_{\text{uplink}} < P_{\text{downlink}} + (13 - \text{LOSS} + 36)$$

That means:

$$P_{\text{uplink}} - (49 - \text{LOSS}) < P_{\text{downlink}}$$

In Telit Lab has been arranged a measurement bench to evaluate the Echo LOSS in a silent room for a HandsFree application. The used position of the microphone and speaker was that suggested by ITU-T P.340 Recommendation. See Fig. 31.

In-air attenuation, speaker, microphone, and their coupling affect the estimation of the echo LOSS.

![Fig. 31: Position of Microphone-Speaker System](image-url)
Fig. 32 is the result of the evaluation of the ECHO LOSS:

- X axis indicates the \(<rxtxrelation>\) parameter (Power Relation RX→TX). It is the input variable of the measure, its value has been changed from –40 dB to 50 dB to accomplish the measure itself.
- Y axis indicates the result of the measure: The Echo Loss in dB.

The figure shows that for \(<rxtxrelation>\) values less than about 5 dB, echo is reduced by 50 dB. For the spatial condition used during the measurement, 5 dB is the max limit to have 50 dB of echo attenuation.

![Graph showing the relationship between RXTX Parameter (dB) and Echo Loss (dB) with a threshold at 5 dB.](image)

Fig. 32: Threshold Echo Loss Behavior

The RXTX Threshold value of 5 dB can guarantee a good behavior of AEC for the used spatial configuration; it is good practice to keep some dB below this value. Use 0 dB to have more margin.

Audio Configurations with different:

- amplifications
- spatial position
- transducers

need new parameters, here are some rules to obtain the new ones:

- Higher gains must be compensated lowering the Power Relation RX→TX parameter.
- Lower gains must be compensated increasing the Power Relation RX→TX parameter.
- Lower LOSS (because of reduction of the distance between speaker and microphone, or modifying the relative orientation of the two elements) must be compensated like the case of higher gain, conversely if the LOSS increases.

When the Power Relation RX→TX has been adjusted working on the \(<adaption_speed>\) and \(<filter_length>\) parameters of the EC algorithm, the AGC algorithm can be tuned following the next steps:
- `<min_atten>` and `<max_atten>`: minimum and maximum attenuation define the range in which AGC works. It is dependent on application and increases with echo level (due to spatial position or high gains).
- `<add_atten>`: additional attenuation permits to the user to add a fixed contribution to the final value of gain calculated by AGC.

Suggested AGC parameters:

Typical values for Full Duplex:
- 6 dB for additional attenuation `<add_atten>`
- 0 dB for minimum attenuation `<min_atten>`
- 12 dB for maximum attenuation `<max_atten>`

These values are a good compromise between reducing echo and maintaining double-talk quality. If you need a high echo cancellation and the full duplex feature is not required, it is possible to reproduce a half-duplex behavior setting:
- `<add_atten>` = 90 dB for additional attenuation
- `<max_atten>` = 90 dB for maximum attenuation

When Power Relation RX→TX gets over the RX→TX Threshold value, the AGC starts to work using the maximum attenuation (90 dB).

Intermediate solutions between Full and Half duplex are very closely related to application.

Suggested NR parameters:

The tuning of the NR algorithm is based on subjective tests.

For maximum attenuation, typical value of `<nr_atten>`, parameter is in the range: 6 ÷ 18 dB, bigger values determine very poor speech quality, see Tab. 23.

When tuning the weights parameters `<nr_w_0>`, `<nr_w_1>` it is important to start with the lower ones and then increase values, keeping a small difference between the two (at least making them equal), see Tab. 23.
14.5 Audio Codec Information and Setting

These AT commands could be useful to improve the performances of the DTMF and eCall features.

Use the following AT command to get codec information about a voice call. It is valid for both GSM/GPRS and HSPA-GSM/GPRS Standards. Even if the mobile is registered on UTRAN network, usually the Operator assigns to the mobile a GSM channel to carry on a voice call.

\[\text{AT#CODECINFO = <format>,<mode>} \]

Example:

\[\text{AT#CODECINFO}=1,1 \rightarrow \text{enable codec information} \]
\[\text{OK} \]
\[\text{ATD<phone number>;#CODECINFO: “HAMR”,“FR”,“EFR”,“HR”,“FAMR”,“HAMR”} \]
\[\text{OK} \]
\[\text{NO CARRIER} \rightarrow \text{remote hang up} \]
\[\text{#CODECINFO: “None”,“FR”,“EFR”,“HR”,“FAMR”,“HAMR”} \]

Use the following AT command to select a codec for a voice call. It is valid for both GSM/GPRS and HSPA-GSM/GPRS Standards. Even if the mobile is registered on UTRAN network, usually the Operator assigns to the mobile a GSM channel to carry on a voice call.

\[\text{AT#CODEC = <codec> } \]

Example

\[\text{AT#CODEC?} \]
\[\text{#CODEC: 0} \rightarrow \text{all the codec are enabled} \]
\[\text{OK} \]
\[\text{AT#CODECINFO}=1,1 \rightarrow \text{enable codec information} \]
\[\text{OK} \]
\[\text{ATD<phone number>;} \rightarrow \text{establish the call} \]
\[\text{#CODECINFO: “HAMR”,“FR”,“EFR”,“HR”,“FAMR”,“HAMR”} \]
\[\text{OK} \]
\[\text{NO CARRIER} \rightarrow \text{remote hang up} \]
\[\text{#CODECINFO: “None”,“FR”,“EFR”,“HR”,“FAMR”,“HAMR”} \]

\[\text{AT#CODEC}=1 \rightarrow \text{select FR mode} \]
\[\text{OK} \]
\[\text{ATD<phone number>;} \rightarrow \text{establish the call} \]
\[\text{#CODECINFO: “FR”,“FR”} \]
\[\text{OK} \]
\[\text{NO CARRIER} \rightarrow \text{remote hang up} \]
\[\text{#CODECINFO: “None”,“FR”} \]
15 GLOSSARY AND ACRONYMS

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the condition of...</td>
</tr>
<tr>
<td>AC</td>
</tr>
<tr>
<td>AEC</td>
</tr>
<tr>
<td>AFE</td>
</tr>
<tr>
<td>AGC</td>
</tr>
<tr>
<td>AMR</td>
</tr>
<tr>
<td>BTL</td>
</tr>
<tr>
<td>CMRR</td>
</tr>
<tr>
<td>CTM</td>
</tr>
<tr>
<td>DTMF</td>
</tr>
<tr>
<td>DVI</td>
</tr>
<tr>
<td>EC</td>
</tr>
<tr>
<td>ECM</td>
</tr>
<tr>
<td>EMI</td>
</tr>
<tr>
<td>FIR</td>
</tr>
<tr>
<td>I2C</td>
</tr>
<tr>
<td>I2S</td>
</tr>
<tr>
<td>MIC</td>
</tr>
<tr>
<td>NR</td>
</tr>
<tr>
<td>NVM</td>
</tr>
<tr>
<td>PCB</td>
</tr>
<tr>
<td>PCM</td>
</tr>
<tr>
<td>RF</td>
</tr>
<tr>
<td>SEC</td>
</tr>
<tr>
<td>SNR</td>
</tr>
<tr>
<td>SPK</td>
</tr>
<tr>
<td>TTY</td>
</tr>
<tr>
<td>URC</td>
</tr>
</tbody>
</table>
16 DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2007-04-13</td>
<td>First issue</td>
</tr>
<tr>
<td>1</td>
<td>2008-01-18</td>
<td>Added GE863-SIM to the Application Table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct AT#VTS</td>
</tr>
<tr>
<td>2</td>
<td>2008-04-17</td>
<td>Editing changes and integration fix of Rev. 0 and Rev. 1</td>
</tr>
<tr>
<td>3</td>
<td>2009-05-14</td>
<td>Deleted UC864-E from Applicability table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduced family models contents’ discrimination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied the new documents’ layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed minor references errors (figures’ and tables’ numbers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deleted the Safety Recommendations paragraph</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited the EVK2 paragraph</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edited Figures 17, 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added figure 20bis</td>
</tr>
<tr>
<td>4</td>
<td>2010-10-04</td>
<td>Added GE/GC864-QUAD V, GE864-QUAD Automotive V2 and 2GL865-DUAL to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>applicability table</td>
</tr>
<tr>
<td>5</td>
<td>2016-02-22</td>
<td>This revision uses a new format. New topics and Modules & SW Versions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tables have been added. The chapters structure has been changed.</td>
</tr>
<tr>
<td>6</td>
<td>2017-06-08</td>
<td>2017 Template applied. In the Application Table has been added the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platform Version Identifier (ID). It is used as reference in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>document. The tables of the chapter 13 have been changed according to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Platform Version Identifier.</td>
</tr>
</tbody>
</table>
SUPPORT INQUIRIES

Link to www.telit.com and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A.
Via Stazione di Prosecco, 5/B
I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC
5300 Broken Sound Blvd, Suite 150
Boca Raton, FL 33487, USA

Telit Wireless Solutions Inc.
3131 RDU Center Drive, Suite 135
Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd.
8th Fl., Shinyoung Securities Bld.
6, Gukjegeumyung-ro8-gil, Yeongdeungpo-gu
Seoul, 150-884, Korea

Telit Wireless Solutions Ltd.
10 Habarzel St.
Tel Aviv 69710, Israel

Telit Wireless Solutions
Technologia e Servicos Ltda
Avenida Paulista, 1776, Room 10.C
01310-921 São Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided “as is”. No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com

Copyright © 2016, Telit