Telit eCall Solution
Application Note

80000NT10046A Rev. 6 - 2014-06-16
APPLICABILITY TABLE

<table>
<thead>
<tr>
<th>SW Versions</th>
<th>AT Ref. Guide</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC Family (Compact)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC864-QUAD</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GC864-QUAD V2</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GC864-DUAL V2</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GE/GL Family (Embedded)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD V2</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD Automotive V2</td>
<td>10.00.xx5</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD ATEX</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GE864-DUAL V2</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GE864-GPS</td>
<td>10.00.xx5</td>
<td></td>
</tr>
<tr>
<td>GE865-QUAD</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GL865-DUAL</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GL865-QUAD</td>
<td>10.00.xx5</td>
<td></td>
</tr>
<tr>
<td>GL868-DUAL</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GE910-QUAD</td>
<td>13.00.xx4</td>
<td></td>
</tr>
<tr>
<td>GE910-GNSS</td>
<td>13.00.xx4</td>
<td></td>
</tr>
<tr>
<td>GL865-DUAL V3</td>
<td>16.00.xx3</td>
<td>GSM/GPRS</td>
</tr>
<tr>
<td>GL865-QUAD V3</td>
<td>16.00.xx3</td>
<td></td>
</tr>
<tr>
<td>GE910-QUAD V3</td>
<td>16.00.xx3</td>
<td></td>
</tr>
<tr>
<td>GE865-QUAD</td>
<td>16.01.xx0</td>
<td></td>
</tr>
<tr>
<td>GT Family (Terminal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT863-PY</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GT864-QUAD</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>GT864-PY</td>
<td>10.00.xx8</td>
<td></td>
</tr>
<tr>
<td>HE910 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE910</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>HE910-GA</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>HE910-EUR</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>HE910-NAR</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UE910 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE910-EUR</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UE910-NAR</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UL865 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL865-EUR</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UL865-NAR</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>HE920 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE920-EU</td>
<td>14.12.xx1</td>
<td></td>
</tr>
<tr>
<td>HE920-NA</td>
<td>14.12.xx1</td>
<td></td>
</tr>
<tr>
<td>HE910 V2 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE910-EUG V2</td>
<td>14.22.xx1</td>
<td></td>
</tr>
<tr>
<td>HE910-NAG V2</td>
<td>14.22.xx1</td>
<td></td>
</tr>
<tr>
<td>UE910 V2 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE910-EU V2</td>
<td>19.10.xx1</td>
<td></td>
</tr>
<tr>
<td>UE910-NA V2</td>
<td>19.10.xx1</td>
<td></td>
</tr>
<tr>
<td>LE920 Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE920-EU</td>
<td>17.00.xx3</td>
<td></td>
</tr>
<tr>
<td>LE920-NA</td>
<td>17.00.xx3</td>
<td></td>
</tr>
</tbody>
</table>

Note: the features described in the present document are provided by the products equipped with the software versions equal or higher than the versions shown in the table. See also the Document History chapter.

1 HE910 is the “type name” of the products marketed as HE910-G & HE910-DG.
Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
USAGE AND DISCLOSURE RESTRICTIONS

License Agreements
The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

Copyrighted Materials
Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

High Risk Materials
Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities”). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks
TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

Copyright © Telit Communications S.p.A.
Contents

1. Introduction ... 6
 1.1. Scope ... 6
 1.2. Audience .. 6
 1.3. Contact Information, Support .. 6
 1.4. Related Documents ... 7
 1.5. Document History ... 7
 1.6. Abbreviations & Acronyms ... 8

2. eCall System Overview .. 9
 2.1. eCall Types .. 10
 2.2. PUSH & PULL Modes .. 11

3. Telit IVS Modem Implementation ... 12
 3.1. Test and Reconfiguration numbers ... 14
 3.1.1. Test Call ... 15
 3.1.2. Reconfiguration Call ... 16
 3.2. Manually Initiated eCall .. 17
 3.3. Automatically Initiated eCall ... 18
 3.4. Internal MSD encoder for eCall .. 19

4. Telit eCall Test Architecture .. 20
 4.1. MSD Support ... 23
 4.2. PSAP Data Base Interface .. 25

5. Telit PSAP Customer Support .. 29

Figures

fig. 1: eCall Service Chain ... 9
fig. 2: PUSH & PULL mode .. 11
fig. 3: MSD transfer, successful case, PUSH mode .. 13
fig. 4: Telit eCall Test Architecture ... 22
fig. 5: MSD Support interface ... 24
fig. 6: Main page of PSAP Data Base interface ... 26
fig. 7: Main parameters... 27
fig. 8: Details .. 28
fig. 9: Telit PSAP shared with Customers .. 30
1. Introduction

The document is divided in two sections. The first one describes the AT commands used to manage the Telit IVS modem implementation. The second one describes the Telit eCall Test Architecture.

1.1. Scope

The Application Note is addressed to Telit applications (IVS modem, eCall test architecture), does not cover exhaustively the eCall Service, for that purpose there are dedicated Standard Technical Specifications

1.2. Audience

This document is intended for users interested to develop an application using the Telit In-Vehicle System modem and test the developed application via the Public-Safety Answering Point Support provided by Telit.

1.3. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals, contact Telit Technical Support Center (TTSC) at:

- TS-EMEA@telit.com
- TS-NORTHAMERICA@telit.com
- TS-LATINAMERICA@telit.com
- TS-APAC@telit.com

Alternatively, use:

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

To register for product news and announcements or for product questions contact Telit Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.
1.4. Related Documents

[1] 3GPP TS 26.267, 3GPP TS 27.007
[8] UE910 V2 AT Commands Reference Guide: 80419ST10124A

1.5. Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Products/SW Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2011-03-08</td>
<td></td>
<td>First issue.</td>
</tr>
<tr>
<td>1</td>
<td>2011-05-17</td>
<td></td>
<td>Added T3, T5, T6, T7 on fig. 3.</td>
</tr>
<tr>
<td>2</td>
<td>2011-07-19</td>
<td></td>
<td>Added products into “Applicability Table” and modified chapter 1.1.</td>
</tr>
<tr>
<td>3</td>
<td>2011-09-21</td>
<td></td>
<td>Modified chapter 4.2.</td>
</tr>
<tr>
<td>4</td>
<td>2012-01-12</td>
<td></td>
<td>Modified: Applicability Table, Chapters 4, 5, fig. 7, 8.</td>
</tr>
<tr>
<td>5</td>
<td>2013-12-03</td>
<td></td>
<td>The document title has been changed from “Telit Solution for eCall Testing” to “Telit eCall Solution”. The Applicability Table has been rearranged with new products supporting the eCall functionality. The following products were already present in the previous release: GE864-QUAD-Automotive-V2, 10.00.xx5 GE864-GPS, 10.00.xx5 GL865-QUAD, 10.00.xx5</td>
</tr>
<tr>
<td>6</td>
<td>2014-06-16</td>
<td></td>
<td>Added chapter 3.4</td>
</tr>
</tbody>
</table>

Products added:
HE920 Family / 14.12.xx1
HE910 V2 Family / 14.22.xx1
UE910 V2 Family / 19.10.xx1
LE920 Family / 17.00.xx3
GE866-QUAD / 16.01.xx0
HE910-NAG V2 / 14.22.xx1
1.6. Abbreviations & Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN1</td>
<td>Abstract Syntax Notation One</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>IVS</td>
<td>In-Vehicle System</td>
</tr>
<tr>
<td>LAB</td>
<td>Laboratory</td>
</tr>
<tr>
<td>MSD</td>
<td>Minimum Set of Data</td>
</tr>
<tr>
<td>NAD</td>
<td>Network Access Device, e.g. a GSM module</td>
</tr>
<tr>
<td>PSAP</td>
<td>Public-Safety Answering Point</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>USIM</td>
<td>UMTS Subscriber Identity Module</td>
</tr>
<tr>
<td>VIN</td>
<td>Vehicle Identification Number</td>
</tr>
</tbody>
</table>
2. eCall System Overview

The eCall is an emergency voice call established from the vehicle (IVS) via the cellular network to the local emergency agencies (PSAP). The eCall allows transferring a data message (MSD) from the IVS over the cellular network to the PSAP. The MSD can include, e.g. vehicle location information, time stamp, number of passenger, Vehicle Identification Number (VIN), and other relevant accident information.

The present document assumes that the reader is familiar with the terminology and the basic concepts concerning the eCall Service. The eCall Architecture is shown in fig. 1, refer to [1].

![Diagram of eCall Service Chain]

fig. 1: eCall Service Chain
2.1. eCall Types

eCall capable NADs are divided into two types, unrestricted and restricted. Unrestricted eCall NADs are those that have the capability and are configured to also access other non-emergency subscription services. Restricted eCall NADs are those that either do not support the capability to access other non-emergency services, or are normally unrestricted eCall NADs that have been configured to make only eCalls. In the latter case the restricted eCall capable NAD is referred to as an 'eCall only'.

Warning: Telit IVS modem implementation does not provide the 'eCall only' feature.

In the event of vehicle collision, the eCall can be established in two ways:

- Manually initiated eCall (MMeC): the emergency call is generated manually by the vehicle occupants.

- Automatically initiated eCall ((A)eC): the emergency call is generated automatically via activation of in-vehicle sensor.

In addition, there are test and reconfiguration calls. Their purpose is to ensure that the NAD under test is capable of establishing a call to each of the non-emergency fixed dialing numbers stored on the USIM.

- Test call:
 It ascertains that an emergency call can be established, and conveys the expected information. Except for test specifically agreed with a PSAP, the IVS shall set the test bit of the MSD.

- Reconfiguration call:
 It requests terminal reconfiguration (e.g. convert an eCall-only terminal into a terminal able to provide normal services as well as eCall).
2.2. **PUSH & PULL Modes**

As stated in document [1] the eCall Service supports two operative modes:

- PUSH
- PULL

In the PUSH mode the MSD data is pushed by the IVS Modem, in the PULL mode the MSD data is required by the PSAP Modem, a simplified handshake is shown in the figure below.

![PUSH & PULL mode diagram](image-url)

fig. 2: PUSH & PULL mode
3. Telit IVS Modem Implementation

The next sub-chapters describe the AT commands provided by the IVS Modem developed by Telit. The messages exchange between IVS and PSAP is depicted in fig. 3. For detailed information about T3, T5, T6, and T7 refer to [3] (Annex A, Table of timings), see also [4].
fig. 3: MSD transfer, successful case, PUSH mode
3.1. Test and Reconfiguration numbers

The test and reconfiguration numbers may be contained only in USIM. If they are present, the user can establish test or reconfiguration call using the numbers provided by the USIM as shown in chapters 3.1.1 and 3.1.2.

If the USIM does not provide the eCall service\(^2\) (the test and reconfiguration numbers are not available), before using the procedure described in chapters 3.1.1 and 3.1.2, the AT\#TESTNUM command shall be used:

- **AT\#TESTNUM=0,<number>** with <number> = eCall test number.
- **AT\#TESTNUM=1,<number>** with <number> = eCall reconfiguration number.

NOTICE: if the USIM provides the eCall service, after the PIN insertion the eCall test and reconfiguration numbers are set. The numbers can be overwritten via the AT\#TESTNUM command. If the user sets the two eCall numbers via AT\#TESTNUM command and after that enters the PIN, the two just entered numbers will be overwritten by the numbers stored in USIM.

\(^2\) If Service n°4 Service Dialing Numbers (SDN) and Service n°89 eCall Data are not available, then the test and reconfiguration numbers are not available.

If Service n° 89 and Service n° 2 are "available" and FDN service is enabled in EFEST and eCall only calls are supported then EFFDN shall only contain two entries. The first entry shall contain the eCall test number and the second entry shall contain the eCall reconfiguration number. A terminal in eCall only mode performs the FDN related procedures.
3.1.1. Test Call

Warning: test number can be available in USIM or shall be entered via AT#TESTNUM command, see chapter 3.1.

AT#CPUMODE=3
sets the IVS modem at the maximum clock speed to improve performances. Not all modules provide this command; in this case skip this step because the modem works already at the maximum clock speed.

AT#ECALLTYPE=1
Set for using unified AT command. Not all modules provide this command; in this case skip this step because the modem use already unified AT command.

AT#MSDSEND
enter codified MSD data (compliant with ASN.1 language)

> … codified MSD data…..

AT#MSDPUSH
PUSH mode is activated, see fig. 2, and [3]. Refer to fig. 3: INITIATION msg is sent to PSAP Link Layer to synchronize the Up Link and wake up the PSAP Application. In response, PSAP Application sends back SEND MSD msg to require the MSD data.

AT+CECALL=0
the index 0 selects the eCall test number, see chapter 3.1. In accordance with the selected index the test eCall is established.

Expected unsolicited messages, refer to fig. 3:

#ECALLEV:0
unsolicited msg indicates that the Down Link is synchronized and the MSD request msg is received.

#ECALLEV:1
unsolicited msg indicates that MSD data has been successfully received by PSAP.

#ECALLEV:2, data
unsolicited msg asks to IVS Modem to accomplish some actions. The actions are codified by data argument, e.g.: clear down the call.

To hang up the call enter the following command:

ATH

NOTICE: If #ECALLEV:16 msg is received in place of one of the above unsolicited msg it means that the synchronization between IVS and PSAP is lost. It can happen in any phase of transmission.
3.1.2. Reconfiguration Call

Warning: reconfiguration number can be available in USIM or shall be entered via AT#TESTNUM command, see chapter 3.1.

AT#CPUMODE=3 sets the IVS modem at the maximum clock speed to improve performances. Not all modules provide this command; in this case skip this step because the modem works already at the maximum clock speed.

AT#ECALLTYPE=1 Set for using unified AT command. Not all modules provide this command; in this case skip this step because the modem use already unified AT command.

AT#MSDSEND enter codified MSD data (compliant with ASN.1 language)

> … codified MSD data….

AT#MSDPUSH PUSH mode is activated, see fig. 2, and [3]. Refer to fig. 3: INITIATION msg is sent to PSAP Link Layer to synchronize the Up Link and wake up the PSAP Application. In response, PSAP Application sends back SEND MSD msg to require the MSD data.

AT+CECALL=1 the index 1 selects the eCall reconfiguration number, see chapter 3.1. In accordance with the selected index the reconfiguration eCall is established.

Expected unsolicited messages, refer to fig. 3:

#ECALLEV:0 unsolicited msg indicates that the Down Link is synchronized and the MSD request msg is received.

#ECALLEV:1 unsolicited msg indicates that MSD data has been successfully received by PSAP.

#ECALLEV:2, data unsolicited msg asks to IVS Modem to accomplish some actions. The actions are codified by data argument, e.g.: clear down the call.

To hang up the call enter the following command:

ATH

NOTICE: If #ECALLEV:16 msg is received in place of one of the above unsolicited msg it means that the synchronization between IVS and PSAP is lost. It can happen in any phase of transmission.
3.2. Manually Initiated eCall

AT#CPUMODE=3
sets the IVS modem at the maximum clock speed to improve performances. Not all modules provide this command; in this case skip this step because the modem works already at the maximum clock speed.

AT#ECALLCURRENT=1
Set for using unified AT command. Not all modules provide this command; in this case skip this step because the modem use already unified AT command.

AT#MSDSEND
enter codified MSD data (compliant with ASN.1 language)

>… codified MSD data….

AT#MSDPUSH
PUSH mode is activated, see fig. 2, and [3]. Refer to fig. 3:
INITIATION msg is sent to PSAP Link Layer to synchronize the Up Link and wake up the PSAP Application. In response, PSAP Application sends back SEND MSD msg to require the MSD data.

AT+ECALL=2
manually initiated eCall is established.

Expected unsolicited messages, refer to fig. 3:

#ECALLEV:0
unsolicited msg indicates that the Down Link is synchronized and the MSD request msg is received.

#ECALLEV:1
unsolicited msg indicates that MSD data has been successfully received by PSAP.

#ECALLEV:2, data
unsolicited msg asks to IVS Modem to accomplish some actions. The actions are codified by data argument, e.g.: clear down the call,

To hang up the call enter the following command:

ATH

NOTICE: If #ECALLEV:16 msg is received in place of one of the above unsolicited msg it means that the synchronization between IVS and PSAP is lost. It can happen in any phase of transmission.
3.3. Automatically Initiated eCall

AT#CPUMODE=3

sets the IVS modem at the maximum clock speed to improve performances. To minimize power consumption, the clock speed can be maximized only during the voice call using the AT#CPUMODE=6 command. Not all modules provide this command; in this case skip this step because the modem works already at the maximum clock speed.

AT#ECALLTYPE=1

Set for using unified AT command. Not all modules provide this command; in this case skip this step because the modem works already unified AT command.

AT#MSDSEND

enter codified MSD data (compliant with ASN.1 language)

>… codified MSD data…..

AT#MSDPUSH

PUSH mode is activated, see fig. 2, and [3]. Refer to fig. 3: INITIATION msg is sent to PSAP Link Layer to synchronize the Up Link and wake up the PSAP Application. In response, PSAP Application sends back SEND MSD msg to require the MSD data.

AT+CECALL=3

automatically initiated eCall is established.

Expected unsolicited messages, refer to fig. 3:

#ECALLEV:0

unsolicited msg indicates that the Down Link is synchronized and the MSD request msg is received.

#ECALLEV:1

unsolicited msg indicates that MSD data has been successfully received by PSAP.

#ECALLEV:2, data

unsolicited msg asks to IVS Modem to accomplish some actions. The actions are codified by data argument, e.g.: clear down the call.

To hang up the call enter the following command:

ATH

NOTICE: If #ECALLEV:16 msg is received in place of one of the above unsolicited msg it means that the synchronization between IVS and PSAP is lost. It can happen in any phase of transmission.
3.4. Internal MSD encoder for eCall

Warning: Telit IVS modem internal MSD encoder only applicable on HE920, HE910V2 family and UE910 V2 family

AT#ECALLTYPE=2 Set to use codified MSD data with ASN.1 language

AT#MSDGI=<GPS mode>,<message identifier>,<confidence>,<passengers>,<time stamp>,<current latitude>,<current longitude>,<current direction>[,<recent latitude n-1>,<recent longitude n-1>[,<recent latitude n-2>,<recent longitude n-2>]]
Configure MSD data which are related the information of geography

AT#MSDVI=<type>,<VIN>,<storage type>,[<Nb of passengers>]
Configure MSD data which are related the information of vehicle

AT+CECALL=<type of eCall>
Initiated eCall is established and pushed MSD automatically within 2s after connect with PSAP.

Expected unsolicited messages, refer to fig. 3:

#ECALLEV:0 unsolicited msg indicates that the Down Link is synchronized and the MSD request msg is received.

#ECALLEV:1 unsolicited msg indicates that MSD data has been successfully received by PSAP.

#ECALLEV:2, data unsolicited msg asks to IVS Modem to accomplish some actions. The actions are codified by data argument, e.g.: clear down the call,

To hang up the call enter the following command:

ATH

NOTICE: When use internal MSD encoder, start push mode at eCall is established.

NOTICE: if GPS mode is set to 1, GPS data of #MSDGI are overwritten to internal GPS position. (UE910-V2 doesn’t support GPS)
4. Telit eCall Test Architecture

Telit has developed an eCall Test Architecture to test its own IVS Modem implementation, evaluate performances and tune up optimizations. Telit Test Architecture is based on the following items:

- **Telit MSD Support** to create MSD data: it substitutes the MSD information source and GPS Receiver functional blocks shown on fig. 1.

- **Telit PSAP Modem implementation** and **PSAP Data Base Interface**: they substitute the PSAP Modem and MSD Display functional blocks, shown on fig. 1.

This section introduces the Telit eCall Test Architecture and point out the characteristics of PSAP Service that can be offered to the Customers involved in IVS applications developing.

The DTE shown in fig. 4 runs the following two applications:

- MDS Support application to generate the MSD text file,

- HyperTerminal session, or some other equivalent application, to send the AT commands and the MSD text file to the IVS Modem.

The module engine interprets the entered commands and manages the IVS Modem in accordance with them, additionally displays on DTE the unsolicited msg coming back from the PSAP side, see fig. 3. For detailed info about T3, T5, T6, T7 refer to [3] (Annex A, Table of timings).

The module establishes a voice call using the PSAP phone number. On the receiving side, there is an ISDN BRI PSTN Gateway connected to the Telit LAB Ethernet network. The ISDN Gateway converts the ISDN protocol present on its input to a VOIP protocol, see fig. 4.

When the IVS Modem is connected to the speech channel (fig. 1), the packets running on the Telit LAB Ethernet network (fig. 4), belonging to the call in progress, hold codified eCall data\(^3\). If the IVS Modem is not connected to the speech channel, it means that microphone and speaker are connected, the packets hold voice.

The interaction among Gateway, PSAP and PABX can be briefly summarized as follows:

- The Gateway receives an entering call (indicating information about the used codec) and forwards it to the PABX;

- The PABX checks if the call must be forwarded to the PSAP, let’s suppose that the call is for the PSAP;

\(^3\) In uplink MSD data, in downlink PSAP messages (full duplex).
• If both PSAP and entering call are using the same codec the connection between PSAP and Gateway is accomplished: a real time voice channel is set up. The received codified MSD data block is stored on the PSAP data base. Using a simple interface, the user can read the received MSD data blocks.

Using the Telit eCall supports the operator can create the codified MSD message, send it to the PSAP and read the codified MSD data on the PSAP data-base in order to evaluate if the MSD created and the MSD received are the same.
fig. 4: Telit eCall Test Architecture

The operator can simulate through the DTE a car in accident.

DTE runs:
- MDS support
- AT interface

Are the decoded MSD data blocks matching?
4.1. MSD Support

Telit MSD Support is a web application that helps the user to arrange and create codified MSD data through a user friendly interface and store it on an MSD text file.

Firstly, the MSD data block is arranged and then is codified using the ASN.1 language. The block can hold a maximum of 140 bytes, includes vehicle location information, time stamp, number of passengers, Vehicle Identification Number (VIN) and other relevant accident information.

The fig. 5 shows the main page of the web application. On the right side, there is the information that the user enters to arrange the MSD data. When all information is entered, the user pushes the “create MSD” button and entered information is coded and displayed on the lower box. The codified MSD data block can be saved on a text file using the “Save” button. Refer to [4] to get detailed information about the MSD data meaning.
fig. 5: MSD Support interface
4.2. PSAP Data Base Interface

Telit PSAP Data Base Interface is a web application that enables the user to read the MSD data block stored on the PSAP Data Base.

The fig. 6 shows the main page of the PSAP Data Base Interface:
- Last Call: date and time of the last call.
- Phone Number: calling number.
- Total: total calls related to the calling number.
- MSD Received: MSD successfully received / Percentage of successful calls.

To display the Main parameters page, fig. 7, click on the calling number:
- Call Id: progressive number.
- Duration: time information about the call.
- Timers: for internal purposes only.
- Caller: calling number.
- MSD: codified MSD data.

To display the Details page, fig. 8, click on “Open Details” button:
- Map: indicates the location where is happened the incident car.
- Id:… the box on the upper right corner shows the MSD data in readable format.
- Raw MSD: the box on the lower left corner shows the codified MSD data.
- PSAP Log Mess. the box on the lower right corner shows the PSAP log used during test sessions.
PSAP Data Base Interface

<table>
<thead>
<tr>
<th>Last Call</th>
<th>Phone Number</th>
<th>Total</th>
<th>Msd Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-02-22 13:52:35</td>
<td>325161</td>
<td>9582</td>
<td>9314</td>
</tr>
<tr>
<td>2011-02-15 13:32:46</td>
<td>404190</td>
<td>134</td>
<td>1</td>
</tr>
<tr>
<td>2011-02-15 12:17:34</td>
<td>335111</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>2011-02-09 11:19:18</td>
<td>3331309</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>2011-02-07 17:14:23</td>
<td>66</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>2011-02-04 09:14:54</td>
<td>348983197</td>
<td>353</td>
<td>327</td>
</tr>
<tr>
<td>2011-02-03 15:11:20</td>
<td>3873, 6278</td>
<td>110</td>
<td>106</td>
</tr>
<tr>
<td>2011-01-26 17:52:50</td>
<td>76335, 79</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>2011-01-26 17:23:16</td>
<td>7924453, 11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2011-01-26 16:37:33</td>
<td>a, a</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2011-01-26 15:28:03</td>
<td>4191, 470</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2010-12-28 11:12:47</td>
<td>795, 1275856</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2010-12-23 18:30:10</td>
<td>13801421</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>2010-12-21 17:24:06</td>
<td>56</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>2010-12-20 15:16:35</td>
<td>PSA, alls</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>2010-12-14 15:09:08</td>
<td>3158761</td>
<td>49</td>
<td>48</td>
</tr>
<tr>
<td>2010-12-02 11:11:35</td>
<td>3158762</td>
<td>194</td>
<td>190</td>
</tr>
<tr>
<td>2010-12-01 12:33:03</td>
<td>38, "782"</td>
<td>58</td>
<td>49</td>
</tr>
<tr>
<td>2010-11-24 14:18:56</td>
<td>58, "707145"</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2010-11-19 03:18:08</td>
<td>3331, 4719</td>
<td>1113</td>
<td>1073</td>
</tr>
<tr>
<td>2010-11-16 18:15:20</td>
<td>346606, 87</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>2010-11-04 14:59:33</td>
<td>328433, 50</td>
<td>246</td>
<td>200</td>
</tr>
<tr>
<td>2010-09-20 18:29:30</td>
<td>120337, 86</td>
<td>246</td>
<td>82</td>
</tr>
<tr>
<td>2010-09-15 15:49:17</td>
<td>103</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>2010-09-13 14:17:13</td>
<td>6002</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2010-09-08 15:26:33</td>
<td>335111</td>
<td>1953</td>
<td>1851</td>
</tr>
<tr>
<td>2010-09-06 18:29:34</td>
<td>348, 3018093</td>
<td>102</td>
<td>57</td>
</tr>
<tr>
<td>2010-08-24 16:21:06</td>
<td>3341, 33145</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2010-07-28 15:59:47</td>
<td>93, 87740</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2010-07-26 15:34:11</td>
<td>52</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2010-05-26 09:22:06</td>
<td>3, 10569, 35</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2010-05-20 15:26:34</td>
<td>., a</td>
<td>61</td>
<td>52</td>
</tr>
</tbody>
</table>

fig. 6: Main page of PSAP Data Base interface
PSAP Data Base Interface

Main parameters

<table>
<thead>
<tr>
<th>Call Id</th>
<th>Duration</th>
<th>Caller</th>
<th>MSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>18719</td>
<td>2011-10-17 10:18:09</td>
<td>M.P</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>Start</td>
<td>18719</td>
<td>011C06B5B5564B65C35</td>
</tr>
<tr>
<td></td>
<td>End</td>
<td>M.P</td>
<td>D05139ED391055558CB3</td>
</tr>
<tr>
<td></td>
<td>Elapsed</td>
<td>M.P</td>
<td>...</td>
</tr>
<tr>
<td>18718</td>
<td>2011-10-14 17:50:09</td>
<td>M.P</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>Start</td>
<td>18718</td>
<td>011C06B5B5564B65C35</td>
</tr>
<tr>
<td></td>
<td>End</td>
<td>M.P</td>
<td>D05139ED391055558CB3</td>
</tr>
<tr>
<td></td>
<td>Elapsed</td>
<td>M.P</td>
<td>...</td>
</tr>
<tr>
<td>18717</td>
<td>2011-10-14 17:38:28</td>
<td>M.P</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>Start</td>
<td>18717</td>
<td>011C06B5B5564B65C35</td>
</tr>
<tr>
<td></td>
<td>End</td>
<td>M.P</td>
<td>D05139ED391055558CB3</td>
</tr>
<tr>
<td></td>
<td>Elapsed</td>
<td>M.P</td>
<td>...</td>
</tr>
</tbody>
</table>

fig. 7: Main parameters
PSAP Data Base Interface Details

fig. 8: Details
5. Telit PSAP Customer Support

The previous chapters illustrate the eCall architecture developed by Telit to test its IVS modem implementation. This architecture can be shared with customers in order to give them the possibility to test and evaluate their IVS applications, refer to fig. 10. To avoid simultaneous phone-calls towards the single ISDN line, each customer has an agreed PSAP calling time slot.

The PSAP data-base, provided by the current Telit Architecture, is not accessible by client equipments. During testing a TTSC operator can read the received MSD Data from PSAP server and send it to the customer.
fig. 9: Telit PSAP shared with Customers