SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICES LIST

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities*). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
APPLICABILITY TABLE

PRODUCTS

<table>
<thead>
<tr>
<th>GC FAMILY (COMPACT)</th>
<th>Sw Version</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE864-QUAD V2</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD V2</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD V2</td>
<td>10.00.xx7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GE/GL FAMILY (EMBEDDED)</th>
<th>Sw Version</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE864-QUAD</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD V2</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD Automotive V2</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD ATEX</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-DUAL V2</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE864-GPS</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GE865-QUAD</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GL865-DUAL</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GL865-QUAD</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GL868-DUAL</td>
<td>10.00.xx7</td>
<td>2G</td>
</tr>
<tr>
<td>GE910-QUAD</td>
<td>13.00.xx3</td>
<td></td>
</tr>
<tr>
<td>GE864-QUAD AUTO</td>
<td>13.00.xx5</td>
<td></td>
</tr>
<tr>
<td>GE910-GNSS</td>
<td>13.00.xx4</td>
<td></td>
</tr>
<tr>
<td>GL865-DUAL V3</td>
<td>16.00.xx2</td>
<td></td>
</tr>
<tr>
<td>GL865-QUAD V3</td>
<td>16.00.xx3</td>
<td></td>
</tr>
<tr>
<td>GL868-DUAL V3</td>
<td>16.00.xx2</td>
<td></td>
</tr>
<tr>
<td>GE910-QUAD V3</td>
<td>16.00.xx3</td>
<td></td>
</tr>
<tr>
<td>GE868-QUAD</td>
<td>16.00.xx3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GT Family (Terminal)</th>
<th>Sw Version</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT863-PY</td>
<td>10.00.xx7</td>
<td></td>
</tr>
<tr>
<td>GT864-QUAD</td>
<td>10.00.xx7</td>
<td>2G</td>
</tr>
<tr>
<td>GT864-PY</td>
<td>10.00.xx7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HE910 Family (Embedded)</th>
<th>Sw Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE910</td>
<td>12.00.xx4</td>
</tr>
<tr>
<td>HE910-GA</td>
<td>12.00.xx4</td>
</tr>
<tr>
<td>Model</td>
<td>Version</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HE910-D</td>
<td>12.00.xx4</td>
</tr>
<tr>
<td>HE910-EUR / HE910-EUD</td>
<td>12.00.xx4</td>
</tr>
<tr>
<td>HE910-EUG / HE910-NAG</td>
<td>12.00.xx4</td>
</tr>
<tr>
<td>UE910-NAR / HE910-NAD</td>
<td>12.00.xx4</td>
</tr>
</tbody>
</table>

UE/UL Family (Embedded)

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE910-EUR / UE910-EUD</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UE910-NAR / UE910-NAD</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UL865-EUR / UL865-EUD</td>
<td>12.00.xx4</td>
<td>3G</td>
</tr>
<tr>
<td>UL865-NAR / UL865-NAD</td>
<td>12.00.xx4</td>
<td></td>
</tr>
<tr>
<td>UL865-N3G</td>
<td>12.00.xx4</td>
<td></td>
</tr>
</tbody>
</table>

HE863 Family (Embedded)

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE863-EUR / -EUD / -EUG</td>
<td>11.00.xx2</td>
<td></td>
</tr>
<tr>
<td>HE863-NAR / -NAD / -NAG</td>
<td>11.00.xx2</td>
<td>3G</td>
</tr>
<tr>
<td>HE863-AUR / -AUD / -AUG</td>
<td>11.00.xx2</td>
<td></td>
</tr>
</tbody>
</table>

UC864 Family (Compact)

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC864-E / -E-DUAL / UC864-G</td>
<td>08.01.xx8</td>
<td></td>
</tr>
<tr>
<td>UC864-E-AUTO / -AWS-AUTO</td>
<td>08.01.xx8</td>
<td>3G</td>
</tr>
<tr>
<td>UC864-K / -AK</td>
<td>08.01.xx8</td>
<td></td>
</tr>
</tbody>
</table>

LE910C1 Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE910C1-AP</td>
<td>25.00.252</td>
<td>4G</td>
</tr>
</tbody>
</table>

Note: The features described in the present document are provided by the products equipped with the software versions equal or higher than the versions shown in the table. See also the Document History chapter.
1 HE910 is the “type name” of the products marketed as HE910-G & HE910-DG.
CONTENTS

NOTICES LIST ... 2
COPYRIGHTS .. 2
COMPUTER SOFTWARE COPYRIGHTS 2
USAGE AND DISCLOSURE RESTRICTIONS 3
I. License Agreements ... 3
II. Copyrighted Materials ... 3
III. High Risk Materials ... 3
IV. Trademarks .. 3
V. Third Party Rights .. 3

APPLICABILITY TABLE .. 4
CONTENTS ... 7
FIGURES LIST ... 9
TABLES LIST .. 9
AT COMMAND LIST .. 10

1. INTRODUCTION ... 11
 1.1. Scope .. 11
 1.2. Audience ... 11
 1.3. Contact Info and Support .. 11
 1.4. Text Conventions ... 12
 1.5. Related Documents .. 13
 1.6. Abbreviation and Acronyms .. 13

2. OVERVIEW .. 14

3. SERIAL MULTIPLEXER PROTOCOL 18
 3.1. CMUX Frames Structures .. 18
 3.1.1. UIH Control Channel Frame Coding 22
 3.1.2. UIH Data Channel Frame Coding 27

4. HOW TO DEVELOP A MUX USER APPLICATION 28

5. SUMMARY AND RECOMMENDATIONS 34

6. TELIT SERIAL PORT MUX TOOL 37
 6.1. Graphical Interface .. 37

7. APPENDIX ... 39
7.1. How to select the Information Field length .. 39
7.2. V.24 Link ... 40
7.3. DTR Signal vs. CMUX Protocol .. 41
8. DOCUMENT HISTORY ... 43
FIGURES LIST

Fig 1: GM, GC, GE/GL, GT Modules Families

Fig 2: HE910 Module Family .. 16

Fig 3: CMUX Frame Structure .. 18

Fig 4: V.24 Octet DCE → DTE ... 24

Fig 5: V.24 Octet DTE → DCE ... 24

Fig 6: VSD Configuration at Power ON (GM, GC, GE/GL,
GT Modules Families) .. 28

Fig 7: VSD Configuration at Power ON (HE910 Family) 29

Fig 8: CMUX Protocol .. 31

Fig 9: Complete V.24 Link versus Telit Serial Port MUX Panel................. 40

TABLES LIST

Tab. 1: CMUX vs. Access Points ... 14

Tab. 2: Telit PSC .. 26

Tab. 3 CMUXMODE (con't) ... 41

Tab. 4 CMUXMODE ... 42
AT COMMAND LIST

The following list, organized in alphabetical order, shows the AT commands covered by this User Guide. The number close to each command indicates the page of the first AT command occurrence.

```
AT#AUTOBND .......................... 23
AT#BND .................................. 23
AT#CAP .................................. 49
AT#CCLK .................................. 134
AT#CEERNET ............................ 147
AT#CMGLCONCINDEX .................. 91
AT#CODEC .................................. 48
AT#CODECINFO ............................ 47
AT#CSURV .................................. 37
AT#DUALAPN .............................. 146
AT#ENCALG .................................. 70
AT#GPIO ................................... 127
AT#HFMICG .................................. 53
AT#HSMICG .................................. 50
AT#JDRENH .................................. 130
AT#MONI ..................................... 36
AT#NCM ..................................... 145
AT#NITZ ..................................... 133
AT#PDPAUTH .............................. 150
AT#QS5 ...................................... 26
AT#SERVINFO ............................. 36
AT#SGACT ................................... 145
AT#SHDN .................................... 58
AT#SHFAGC .................................... 54
AT#SHFEC .................................... 54
AT#SHFNR .................................... 55
AT#SHFSF .................................... 53
AT#SHSAGC .................................... 52
AT#SHSEC .................................... 51
AT#SHSNR .................................... 52
AT#SHSSD .................................... 51
AT#SII ....................................... 20
AT#SIMDET ................................... 27
AT#SLED ..................................... 130
AT#SLEDASV ................................... 130
AT#SMSMODE .................................. 76
AT#WAKE .................................... 139
AT#WAKE .................................... 137
AT+CALA ...................................... 134
AT+CALD ...................................... 135
AT+CAPD ...................................... 138
AT+CAPD ...................................... 138
AT+CBST ...................................... 56
AT+CFUN ...................................... 100
AT+CGACT ..................................... 143
AT+CGATT ..................................... 143
AT+CGATT ..................................... 86
AT+CGATT ..................................... 86
AT+CGCONT .................................... 144
AT+CGCONT .................................... 143
AT+CGM ...................................... 22
AT+CMEE ...................................... 22
AT+CMGD ...................................... 87
AT+CMGF ...................................... 71
AT+CMGW ...................................... 82
AT+CMSS ...................................... 84
AT+CMUT ...................................... 50
AT+CNMI ...................................... 80
AT+CPBF ...................................... 96
AT+CPBR ...................................... 97
AT+CPBS ...................................... 94
AT+CPMS ...................................... 79
AT+CPOL ...................................... 33
AT+CRC ....................................... 59
AT+CREG ...................................... 30
AT+CRSM ...................................... 29
AT+CSCA ....................................... 75
AT+CSCB ....................................... 90
AT+CSCS ....................................... 73
AT+CSIM ....................................... 28
AT+CSMP ....................................... 71
AT+CSNS ....................................... 58
AT+CSQ ......................................... 34
AT+FCLASS ..................................... 46
AT+IPR ......................................... 18
AT+SEILNT ..................................... 21
AT+SNUM ....................................... 29
AT+WS46 ....................................... 23
ATD ............................................. 47
ATD’99# ....................................... 141
ATH ............................................. 47
```
1. INTRODUCTION

1.1. Scope
This document covers the more significant standard and proprietary AT commands provided by Telit's modules. Several module features are described and for each one of them the related AT commands are explained through examples. This document is not an exhaustive description of the AT commands implemented on the Telit's modules series, its target is only to give you an entry point to the AT commands world.

1.2. Audience
The present User Guide is addressed to users that need to learn and use quickly standard and proprietary AT commands. The reader can learn the use of the AT commands through simple examples shown in the document, and then deepen the interested AT commands reading the documents [1]/[17] in accordance with the used module.

1.3. Contact Info and Support
For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com
- TS-SRD@telit.com (for Short Range Devices)

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.
Telit appreciates feedback from the users of our information.
1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.
1.5. Related Documents

[1] 3GPP TS 07.10 Version 7.1.0, Release 4
[9] Easy Script in Python, code: 80000ST10020a

1.6. Abbreviation and Acronyms

DCE Data Communication Equipment
DTE Data Terminal Equipment
MUX Multiplexer
NVM Non Volatile Memory
OS Operating System
TT Trace Tool (Generic Trace Tool)
VSD Virtual Service Device
2. OVERVIEW

Before dealing with the technical characteristics of the CMUX Standard Protocol [1] provided by the Telit Modules and the setting up and use of the Telit Serial Port MUX tool running on DTE (PC-Windows), it is useful to show how the two software components can be used together and which advantages they give. The Error! Reference source not found. shows four virtual connections (VC1, VC2, VC3 and VC4) which are running on a unique physical serial line (COM1/ASC0); the Module has entered the Multiplexed Mode. The four different Applications running on DTE are tied, via the virtual connections, to four Access Points in order to communicate with four different Services provided by the Telit Module.

Follow the example below to enter the Virtual Service Device Configuration (Multiplexed Mode) showed on Error! Reference source not found.:

- Telit Module and DTE are physical connected via ASC0/COM1 serial ports, and both are powered on;
- Run the Telit Serial Port MUX tool on DTE, refer to chapter 6;
- On DTE start, for example, three Hyper Terminals connected to three virtual ports provided by the Telit tool, e.g. COM3, COM4, COM5;
- Now the Hyper Terminals can send and receive data from the Module on three independent Virtual Channels by means of the Multiplexer Protocol implemented by the Telit Tool.

Tab 1 summarizes the VSD Configuration of Error! Reference source not found..

Legend:

“ASC0/VCx”: Virtual Connection (channels) that must be used to reach the Access Point indicated on the top of the column. The user can use one or more Access Points.

<table>
<thead>
<tr>
<th>VSD Access Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT0 Instance #1</td>
</tr>
<tr>
<td>ASC0/VC1</td>
</tr>
</tbody>
</table>

Tab 1: CMUX vs. Access Points

2 VSD is a function that manages the logical connections between the physical serial ports and the Access Points. To have more information concerning the several VSD configurations see [2], [3].
Refer to Error! Reference source not found.: with the term “instance” is intended an AT Commands Parser. TELIT modules provide three logically independent AT Commands Parsers. Any instance is connected to an Access Point. In general, the Access Point is the connection between the communication path and the Service offered by the module.

Same considerations are valid for modules belonging to the HE910 Family, of course with the required adjustment, see Fig. 1
Thanks to the multiplexing feature, operations such as controlling the module or using the SMS service can be performed via vacant virtual channels without disturbing the existing data flow and no access to a second Serial Port is needed.

NOTICE

the use of the multiplexing feature is strictly connected with the configuration of the VDS, it is suggested to see the several different configuration provided by Telit Modules, refer to [2], [3].

Telit CMUX implementation supports the following features:

- Operating Option: Basic, refer to [1];
- Only UIH frames are supported, refer to [1];
- Four full DLCI (four Virtual Ports);
- Every CMUX Virtual Channel connected to an AT Instance has its own user profile storage in NVM;
- Independent setting of Unsolicited Message;
- Every CMUX Virtual Channel has its own independent flow control.
NOTICE:
CMUX can be activated only with the SELINT 2 interface. Before activating CMUX check the current AT Interface Style, see [4], and [5] in accordance with the used module.
3. SERIAL MULTIPLEXER PROTOCOL

The next chapter introduces the CMUX Protocol and its Frames Structures with a particular attention to the Telit CMUX implementation. Refer to [1] to have the complete description.

3.1. CMUX Frames Structures

All information transmitted between the module and the application is based on frames that have the following structure (for Maximum Frame Structure Length see chapter 7.1):

<table>
<thead>
<tr>
<th>Flag</th>
<th>Address</th>
<th>Control</th>
<th>Length Indicator</th>
<th>Information Field</th>
<th>FCS</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 octet</td>
<td>1 octet</td>
<td>1 octet</td>
<td>1 or 2 octets</td>
<td>Unspecified length but integral number of octets</td>
<td>1 octet</td>
<td>1 octet</td>
</tr>
</tbody>
</table>

![Fig. 2: CMUX Frame Structure](image)

Flag Octet

Each frame begins and ends with a flag octet defined as 11111001 in Binary format (0xF9 in Hexadecimal format).

Address Octet

The form of address octet is the following:

```
0 1 | 2 3 | 4 5 | 6 7
EA C/R | DLCI
```

EA: Extension Bit

It is set to 1.

C/R: Command/Response

The Initiator is the entity that sends the first SABM command using DLCI 0. In the Telit CMUX implementation, the Initiator is always the Application, consequently it sends a command to the Module with C/R = 1; when the Module (Responder) answers C/R is still 1. If on the same Data Link session the Module sends a command towards the Application C/R is 0; when the Application answers C/R is still 0. The table below summarizes the concept.

<table>
<thead>
<tr>
<th>Session Initiator</th>
<th>Direction</th>
<th>Responder</th>
<th>C/R Value</th>
<th>Command/Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>➔</td>
<td>Module</td>
<td>1</td>
<td>Command</td>
</tr>
<tr>
<td>Application</td>
<td>←</td>
<td>Module</td>
<td>1</td>
<td>Response</td>
</tr>
<tr>
<td>Application</td>
<td>←</td>
<td>Module</td>
<td>0</td>
<td>Command</td>
</tr>
<tr>
<td>Application</td>
<td>➔</td>
<td>Module</td>
<td>0</td>
<td>Response</td>
</tr>
</tbody>
</table>
DLCI: Data Link Connection Identifier

DLCI value identifies the Virtual Port inside the Module with the following assignment:

<table>
<thead>
<tr>
<th>DLCI</th>
<th>Virtual Port type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved to Control Channel</td>
</tr>
<tr>
<td>1</td>
<td>Virtual Port #1</td>
</tr>
<tr>
<td>2</td>
<td>Virtual Port #2</td>
</tr>
<tr>
<td>3</td>
<td>Virtual Port #3</td>
</tr>
<tr>
<td>4</td>
<td>Virtual Port #4</td>
</tr>
</tbody>
</table>

Its use depends on the used module, refer to [2], [3].

NOTICE:
the Services connected to Virtual Port #4 depend on the used Telit Module and the VSD configuration. To have detailed information refer to [2] and [3].

Control Octet

The content of the control octet defines the type of frame as in the following table:

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>Control Octet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>SABM (Set Asynchronous Balanced Mode)</td>
<td>1 1 1 1 P/F 1 0 0</td>
</tr>
<tr>
<td>UA (Unnumbered Acknowledgement)</td>
<td>1 1 0 0 P/F 1 1 0</td>
</tr>
<tr>
<td>DM (Disconnected Mode)</td>
<td>1 1 1 1 P/F 0 0 0</td>
</tr>
<tr>
<td>DISC (Disconnect)</td>
<td>1 1 0 0 P/F 0 1 0</td>
</tr>
<tr>
<td>UIH (Unnumbered Information with Header check)</td>
<td>1 1 1 1 P/F 1 1 1</td>
</tr>
</tbody>
</table>

P/F stands for Poll/Final bit:
Refer to [1] to have a detailed description.

SABM (Set Asynchronous Balanced Mode)

The SABM command is used by the application to start the HDLC Connection and module will answer to this command with an UA Frame.
UA (Unnumbered Acknowledgement)

The UA response is sent by the module as an acknowledgement that a SABM or DISC command was accepted.

DM (Disconnected Mode)

In case module rejects SABM or DISC command it will send DM response, this happens if for example a SABM is sent for a DLCI not supported. Or if a DISC is sent to a DLCI Address already closed.

DISC (Disconnect)

The DISC is used to close a previously established connection. If the application sends a disc for the DLCI 0 (the control channel), all the established channels will be closed. The module will answer to this command with an UA Frame.

UIH (Unnumbered Information)

Please refer to the following chapters for the detailed information about UIH

Length Indicator

This Octet specifies the length of the Information Field

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>L4</td>
<td>L5</td>
<td>L6</td>
<td>L7</td>
</tr>
</tbody>
</table>

E/A Bit should be 1 in case 7 bits are enough for the length (length <= 127) otherwise length should be coded with two octets as described below:

Octet 1:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>L4</td>
<td>L5</td>
<td>L6</td>
<td>L7</td>
</tr>
</tbody>
</table>

Octet 2:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>L8</td>
<td>L9</td>
<td>L10</td>
<td>L11</td>
<td>L12</td>
<td>L13</td>
<td>L14</td>
<td>L15</td>
</tr>
</tbody>
</table>

To select the right length of the Information Field in accordance with the used Telit Module see chapter 7.1.
Information Field

The information field is the payload of the frame and carries the user data. The field exists only for frame type that contains UIH Control Field. The P/F bit should be set to value 0 when this field is sent.

FCS (Frame Checking Sequence)

Refer to [1] to have a detailed description.
3.1.1. UIH Control Channel Frame Coding

Refer to Fig. 2 and the figure below: the Information field can carry UIH Commands or User Data. The Information field exists only for UIH frame type. The P/F bit should be set to value 0 when this field is sent. This chapter focuses on the UIH Commands; in this case DLCI shall always have the value 0. It means that the UIH Command is transferred on the logical Control Channel.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Address</th>
<th>Control</th>
<th>Length Indicator</th>
<th>Information Field</th>
<th>FCS</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 octet</td>
<td>1 octet</td>
<td>1 octet</td>
<td>1or2 octets</td>
<td>Unspecified length but integral number of octets</td>
<td>1 octet</td>
<td>1 octet</td>
</tr>
</tbody>
</table>

Type Octet:

EA: Extension Bit
It is always set to 1.

C/R: Identifies if it is a Command or Response

TYPE: Hereafter are listed the UIH Commands TYPES followed by their Length Indicators (for its coding see chapter 3.1). If Length Indicators is not zero, it is followed the Values octets.

Multiplexer close down (CLD)
The CLD command is used to reset the link, exit Multiplexed Mode and enter AT Command Mode.

<table>
<thead>
<tr>
<th>LSb</th>
<th>MSb</th>
<th>LSb</th>
<th>MSb</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>C/R</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Length Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

Test Command (Test)
Test command is used to test the connection between module and the user application. The Length Indicator describes the number of values bytes, which are used as a verification pattern. The opposite entity shall respond with exactly the same value bytes. Least Significant bit is on left side of the octet:

<table>
<thead>
<tr>
<th>LSb</th>
<th>MSb</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>C/R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Length Indicator</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value ...</th>
<th>Value length</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>length</td>
<td>Any Char</td>
<td>Any Char</td>
<td>Any Char</td>
<td>Any Char</td>
</tr>
</tbody>
</table>
Modem Status Command (MSC)

MSC command is used to send Virtual V.24 Signals status. Each Virtual Connection has its own independent Virtual V.24 Signals status. The two entities exchange MSC messages which formats depend on the CMUXMODE value, refer to chapter 7.3, Tab. 3:

CMUXMODE = 0 or 4

When an entity sends its Virtual V.24 Signals status, the other one answers with a message containing its own Virtual V.24 Signals status. There are two scenarios depend on who sends first the message:

DTE (Application) sends the first message:

DLCI=0, MSC (command from DTE with its V.24 Signals) DLCI=1

DCE (Telit Module) answers:

DLCI=0, MSC (response from DCE with its V.24 Signals) DLCI=1

DCE (Telit Module) sends the first message:

DLCI=0, MSC (command from DCE with its V.24 Signals) DLCI=1

DCE (Application) answers:

DLCI=0, MSC (response from DTE with its V.24 Signals) DLCI=1

CMUXMODE = 1 or 5

When an entity sends its Virtual V.24 Signals status, the other one acknowledges the received message using the same message with C/R bit negated (octet Type of the Information Field). There are two scenarios depend on who sends first the message:

DTE (Application) communicates its Virtual V.24 Signals status:

DLCI=0, MSC (command from DTE with its V.24 Signals) DLCI=1

DCE (Telit Module) acknowledges:

DLCI=0, MSC (response from DCE with DTE V.24 Signals) DLCI=1

DCE (Telit Module) communicates its Virtual V.24 Signals status:

DLCI=0, MSC (command from DCE with its V.24 Signals) DLCI=1

DTE (Application) acknowledges:

DLCI=0, MSC (response from DTE with DCE V.24 Signals) DLCI=1
Format without Break Indication:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length Indicator</th>
<th>DLCI</th>
<th>V24 octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>0 0 0 1 1</td>
<td>E/A</td>
<td>1</td>
</tr>
<tr>
<td>C/R</td>
<td></td>
<td>1 DLCI</td>
<td>Lines Status</td>
</tr>
</tbody>
</table>

Format with Break Indication:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length Indicator</th>
<th>DLCI</th>
<th>V24 octet</th>
<th>Break octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>0 0 0 1 1</td>
<td>E/A</td>
<td>1</td>
<td>E/A Lines Status</td>
</tr>
<tr>
<td>C/R</td>
<td></td>
<td>1 DLCI</td>
<td>Lines Status</td>
<td>Break Status</td>
</tr>
</tbody>
</table>

V.24 Octet from Module to Application (see chapter 7.2)

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FC DSR CTS 0 0 RING DCD</td>
</tr>
</tbody>
</table>

Fig. 3: V.24 Octet DCE → DTE

V.24 Octet from Application to Module (see chapter 7.2)

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FC DTR RTS 0 0 0 0</td>
</tr>
</tbody>
</table>

Fig. 4: V.24 Octet DTE → DCE

FC: this bit is set to 1 when module or application is not able to accept any frames.

CTS: this bit is set to 1 when module is able to receive data (ref. cmd &K,\Q and related)

RTS: this bit is set to 1 when application is able to receive data. (ref. cmd &K,\Q and related)

DSR: this bit is set to 1 when module is ready to communicate (ref. cmd &S, and related)

DTR: this bit is set to 1 when application is ready to receive data. (ref. cmd &D, and related)

RING: this bit is set to 1 when module receive an incoming call (ref. cmd \R, and related)

DCD: this bit is set to 1 when module has an active data connection. (ref. cmd &C, and related)
NOTICE:

when a new instance is established the default settings are FC = 1, RTS = 0, DTR = 0, this means that the module will not be able to send the data to application until user changes the default setting to FC = 0, RTS = 1, DTR = 1. The application will send an MSC command to change this value before starting sending data.

Break Octet valid in #CMUXMODE 0 and 4

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This octet will be sent each time a Break Signal is simulated.

Break Octet valid in #CMUXMODE 1, 5 and in all modules that do not provide #CMUXMODE command.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- bit1 = 0 → no Break
- bit1 = 1 → Break is required

Not Supported Command Response (NSC)

This response is sent in case a command type is not supported by the receiving entity.

<table>
<thead>
<tr>
<th>LSb</th>
<th>MSb</th>
<th>Type</th>
<th>Length Indicator</th>
<th>Command Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>C/R</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Power Saving Control (PSC)

Standard PSC command is used to cause the Telit Module to enter the Power Saving Mode when it is in Multiplexed Mode. It simulates the N=0 command.

<table>
<thead>
<tr>
<th>LSb</th>
<th>MSb</th>
<th>Type</th>
<th>Length Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>C/R</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Telit PSC command has one more octet containing the Power Saving Mode, see Tab 2.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length Indicator</th>
<th>Power Saving Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A</td>
<td>C/R 0 0 0 1 0</td>
<td>E/A 1 0 0 0 0 0</td>
</tr>
</tbody>
</table>

The table below shows which CFUN modes can be simulated using standard (Std) and Telit PSC to cause the Telit Module to enter the Power Saving Mode in accordance with the used Module Family, refer to [6] to get more information.

<table>
<thead>
<tr>
<th>AT+CFUN mode</th>
<th>GM, GC, GE/GL, GT Families</th>
<th>HE910 Family</th>
<th>HE863 Family</th>
<th>UC Family</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std PSC</td>
<td>Telit PSC</td>
<td>Std PSC</td>
<td>Telit PSC</td>
</tr>
<tr>
<td>0</td>
<td>no mode octet</td>
<td>mode = 0</td>
<td>mode = 0</td>
<td>no mode octet</td>
</tr>
<tr>
<td>1</td>
<td>not supported</td>
<td>mode = 1</td>
<td>mode = 1</td>
<td>not supported</td>
</tr>
<tr>
<td>2</td>
<td>not supported</td>
<td>not supported</td>
<td>not supported</td>
<td>not supported</td>
</tr>
<tr>
<td>4</td>
<td>not supported</td>
<td>not supported</td>
<td>not supported</td>
<td>not supported</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>mode = 7</td>
<td>mode = 7</td>
<td>mode = 7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>mode = 9</td>
<td>mode = 9</td>
<td>mode = 9</td>
<td></td>
</tr>
</tbody>
</table>

Tab 2: Telit PSC

NOTICE:
AT+CFUN command can’t be used in Multiplexed Mode.
3.1.2. UIH Data Channel Frame Coding

Refer to Fig. 2 and the figure above: the Information field is the payload of the frame and carries the user data. The Information field exists only for UIH frame type. The P/F bit should be set to value 0 when this field is sent.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Address</th>
<th>Control</th>
<th>Length Indicator</th>
<th>Information Field</th>
<th>FCS</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 octet</td>
<td>1 octet</td>
<td>1 octet</td>
<td>1 or 2 octets</td>
<td>Unspecified length but integral number of octets</td>
<td>1 octet</td>
<td>1 octet</td>
</tr>
</tbody>
</table>

Length indicator

It specifies the length of the Information field. See its coding in chapter 3.1

User Data

User payload, the number of octets is defined by the Length Indicator
4. HOW TO DEVELOP A MUX USER APPLICATION

Objective of this chapter is to provide the reader with the guidelines to develop a User Application able to cause the connected module enters Multiplexed Mode and support the Multiplexing Protocol without the assistance of the Telit Serial Port MUX tool.

Let's start with VSD Configuration at Module Power ON, see Fig. 5, Fig. 6 for all Telit Modules Families.

For example, take in consideration the Fig. 5: VSD Configuration connects the physical port ASC0 to the AT0 AT command parser; AT0 parser is matching the instance # 1. Telit Module provides two more AT parser instances: instance # 2 and # 3. The user, by means of DTE, can enter AT commands; they are parsed by the AT0 parser and executed by the module engine. VDS also connects physical port ASC1 to the Trace utility. The user, by means of Telit RTD application running on DTE, can see the trace log. In this configuration the CMUX Standard Protocol [1] is not still used.

Same considerations are valid for modules belonging to the HE910 Family, of course with the required adjustment, see Fig. 6.

![Fig. 5: VSD Configuration at Power ON (GM, GC, GE/GL, GT Modules Families)](image)

1VV0300994 Rev. 6 Page 28 of 45 2017-02-07
First of all, the User Application must force the connected module in Multiplexed Mode. To do that, it sends the AT commands listed below, see [4], [5], and [6] to get more information concerning the AT commands in accordance with the used module.

NOTICE:

the commands are sent by means of a regular serial line protocol, no Multiplexing Protocol is still activated during this phase.

Select #SELINT=2 AT Interface Style

```
AT#SELINT=2
OK
```

Disable Echo, Activate verbose format, Activate Hardware Flow Control, Program the DTR to close the current connection on its high to low transition

```
ATE0V1&K3&D2
OK
```

The following entered AT commands are not echoed; only OK is answered by the module.
Select the Serial Port Speed.

```
AT+IPR=115200
OK
```

Store the setting on profile 0 and at power on use profile 0

```
AT&W=0&P=0
OK
```

Select the CMUX mode, refer to chapter 7.3.

```
AT#CMUXMODE=1
OK
```

Start MUX protocol (Module enters Multiplexed Mode):

For Telit Modules provided with no configurable CMUX, see chapter 7.1:

```
AT+CMUX=0
OK
```

For Telit Modules supporting configurable CMUX, see chapter 7.1:

```
AT+CMUX=0,0,,122
OK
```

When the User Application receives the OK response of the +CMUX command, the module entered the Multiplexed Mode and the regular serial line protocol is no more available. The User Application can continue to be connected with the module only via the Multiplexing Protocol, see Fig. 7 and the example of CMUX messages sequence in hexadecimal format listed on the next page.
After entering +CMUX AT Command, the CMUX protocol substitutes the regular serial line protocol. Hereafter is listed an example of CMUX protocol. The messages are in hexadecimal format.

Legend:

- **Red** - messages sent from User Application (DTE) to Module (DCE)
- **Green** - messages sent from Module to User Application
- **Black** - comments

DLC establishment on Control Channel:

- **F9 03 3F 01 1C F9** - DLCI = 0, SABM CMD, POLL BIT=1
- **F9 03 73 01 D7 F9** - DLCI = 0, UA RESPONSE, FINAL BIT=1

DLC establishment on Virtual Channel # 1 (Open Virtual Port #1):

- **F9 07 3F 01 DE F9** - DLCI = 1, SABM CMD, POLL BIT=1
- **F9 07 73 01 15 F9** - DLCI = 1, UA RESPONSE, FINAL BIT=1

DLC establishment on Virtual Channel # 2 (Open Virtual Port #2)
CMUXMODE = 1 or CMUXMODE = 5

User Application sends the module the Virtual V.24 Signal status concerning its Logical Port (COMx) connected to Virtual Channel #2: FC=0, RTS=0, DTR=1

\[
\text{F9 03 EF 09 E3 05 0B 05 FB F9} \quad \text{-DLCI} = 0; \text{UIH Frame, MSC CMD for Virtual Channel (DLCI) =2}
\]

Module answers with the just received Virtual V.24 Signal status. C/R bit belonging to the TYPE octet is negated

\[
\text{F9 01 EF 09 E1 05 0B 05 9A F9} \quad \text{-DLCI} = 0; \text{UIH Frame, MSC CMD for Virtual Channel (DLCI) =2}
\]

Module sends its Virtual V.24 Signal status concerning Virtual Port #2: FC=0, DSR=1, CTS=1, RING=1, DCD=0.

\[
\text{F9 01 EF 09 E3 05 0B 4D 9A F9}
\]

User Application answers with the just received Virtual V.24 Signal status. C/R bit belonging to the TYPE octet is negated.

\[
\text{F9 03 EF 09 E1 05 0B 4D FB F9}
\]

CMUXMODE = 0 or CMUXMODE = 4

User Application sends the module the Virtual V.24 Signal status concerning its Logical Port (COMx) connected to Virtual Channel #2: FC=0, RTS=0, DTR=1

\[
\text{F9 03 EF 09 E3 05 0B 05 FB F9} \quad \text{-DLCI} = 0; \text{UIH Frame, MSC CMD for Virtual Channel (DLCI) =2}
\]

Module sends its Virtual V.24 Signal status concerning Virtual Port #2: FC=0, DSR=1, CTS=1, RING=1, DCD=0.

\[
\text{F9 03 EF 09 E1 05 0B 4D 9A F9}
\]

User Application sends the AT Command: AT+CGMR

\[
\text{F9 07 EF 11 41 54 2B 43 47 4D 52 0D 2B F9}
\]

Module answers the AT command result: \(<\text{CR}><\text{LF}>07.02.504<\text{CR}><\text{LF}><\text{CR}><\text{LF}><\text{OK}>

\[
\text{F9 05 EF 27 0D 0A 30 37 2E 30 32 2E 35 30 34 0D 0A 0D 0A 4F 4B 0D 0A 80 F9}
\]

User Application causes the module to enter Power Saving Mode. UIH Frame, PSC CMD

\[
\text{F9 03 EF 05 41 01 F2 F9}
\]
Notice:	to get more information concerning Power Saving Mode refer to [6].
Notice:	in absence of communication between the Telit Module and the User Application it is suggested to send a periodic Test Command to the Telit Module in order to verify the CMUX protocol operating state.
Notice:	here is the Telit PSC command and the related response.

- **F9 03 EF 07 43 03 07 11 F9**
 PSC CMD: CFUN=7
- **F9 01 EF 07 41 03 01 70 F9**
 PSC RSP: ACK=01
5. SUMMARY AND RECOMMENDATIONS

*The customer/integrator to design its own Multiplexer Protocol Application shall remember:

- Telit Module supports the CMUX Basic Option and UIH Frames according to [1];
- Serial Port must be so configured: 8 data bits, no parity, 1 stop bit;
- It is mandatory to use the Hardware Flow control on the physical serial line that will support the Multiplexer Protocol. It should be set before entering Multiplexer Mode using AT command AT&K3 (both RTS/CTS active);
- DTR Lines should be set correctly (pulled-up), since a transition of the DTR signal causes the exit from Multiplexer Mode, this is valid only for modules equipped with a not updated software version, see chapter 7.3, Tab. 3.

* If the Telit Module is operating in Multiplexer Mode, the following restrictions will be applied:

- Software Flow control XON/XOFF is not supported;
- Call control: a voice call can be initiated, answered and closed on any channel;
- Call control: Data or Fax call can be initiated and answered on any channel but closed only on the channel where the call was started/answered;
- Phonebook access: if you wish to write the same phonebook entry using two or more different Virtual Channels at the same time, please note that only the last entry will be stored;
- When in Multiplexed Mode, the escape sequence ‘+++’, sent on one Virtual Channel, will not be recognized and executed by the involved AT instance (except for HE910 Family).
- It is responsibility of the Application to use the Break Octet of the Modem Status Command (MSC). Break Octet simulates the escape sequence (not yet supported on HE910 Family).
- The commands listed below are ignored in case of Multiplexer Mode. To be more precise it is possible to read/write values but they will have no effect on the behavior of the module, refer to [4], [5].

 - AT+IPR
 - AT+IFC
 - AT+ICF
 - ATS2; ATS12; ‘+++’
 - ATS25
 - AT+CMUX
 - AT#SELint
 - AT&F, ATZ, AT#Z

Due to some restriction in the GSM/GPRS standard or limitation of the software the AT commands, listed below, will not be executed in parallel by the module. If one of the following commands are requested to be executed on one AT Instance (see chapter 2) while one of this command is running on another AT Instance, the latest execution is suspend until the first request is completed.

 - ATA <Until CONNECT is not displayed>
 - ATD <Until CONNECT is not displayed>
 - ATO
 - ATH
 - AT+CGATT <Set command>
 - AT+CGACT
 - AT+COPS <Set Command or Test Command>
 - AT+CREG <Set Command>
 - AT#SEMAIL <Blocked after Ctrl-z is sent>
 - AT#EMAILD <Blocked after Ctrl-z is sent>
• AT#SKTOP <Until CONNECT is not displayed>
• AT#SKTD <Until CONNECT is not displayed>
• AT#QDNS
• AT+CAMM
• All FTP Command
• All CSURV Command
• All Supplementary Service Command
• All Phone Book related command

NOTICE:
this limitation appears only when two or more of the commands listed above are combined. E.g.: commands AT#MONI, +CGMR, AT+COPS? will always be executed without suspension since only one of the commands listed above is running.

NOTICE:
for further restriction on behavior of other commands please refer to the specific documentation: [4], [5], [7], and [8].

*In general an AT command executed by the selected AT Instance modified only the behavior of the used AT Instance. It has its own User Profile stored in NVM. Vice versa, the AT commands listed below modify the behavior of the all set of AT Instances, regardless the used AT Instance and its connected Virtual Circuit.

• AT#HFMICG
• AT#HSMICG
• AT+CMUT
• AT#STM
• AT#SHFEC
• AT#CAP
• AT+CLVL
• AT#SRS
• AT+CRSL
• AT#SRP
• AT#NITZ
• AT+CALM
• AT#SHFSD
• AT#DAC
• AT+COPS
• AT#CODEC
• AT#DVI
• AT#E2SMSRI
• AT#E2SLRI
• AT+CSCB
At Module power on, the physical port ASC0 is connected to the AT0 Instance as showed by Fig. 5, in accordance with that, ASC0 uses the profile of AT0 Instance. When the Module is in Multiplexer Mode, the Virtual Channel 1 is connected to AT0 Instance (see Error! Reference source not found.) and consequently uses the AT0 Instance profile. Same considerations are valid for HE910 Family.

*When Telit Module is in Multiplexed Mode don’t use AT+CFUN command, use the Power Saving Command (PSC), see Tab 2.

For example, don’t use AT+CFUN=5 with Module equipped with a not updated software version because the transition High/Low of the DTR signal causes the disconnection of the CMUX protocol, see Tab. 3.

*CMUX Protocol and Python: see the AT command #CMUXSCR, refer to [9]
6. **TELIT SERIAL PORT MUX TOOL**

Telit has developed a tool called Telit Serial Port MUX showed in schematic manner on Error! Reference source not found. and Fig. 1; the tool is running on a PC-Windows. From the figures it is possible infer that four Virtual Channels can exist at the same time on one physical line (COM1). Four logical COMx, provided by the Windows OS, can be used by four different PC-Applications to gain one of the four Virtual Channels.

6.1. **Graphical Interface**

After installing Telit Serial Port Mux tool on PC-Windows, it looks as in the following figure:

Select Setup Menu to configure the Main Port and the Virtual Ports. The Configure Panel is self-explanatory.
Click Modem Type Menu to select the Telit Modem in accordance with the actual Telit Modem connected to the DTE.

Click Frame Size Menu to define the Maximum Frame Structure Length, see Fig. 2.
7. **APPENDIX**

7.1. **How to select the Information Field length**

To know if your actual used Telit Module supports a configurable CMUX protocol or if its configuration is fixed, use the following procedure. Assume a DTE is connected to your module and manually enter the listed below +CMUX commands.

Enter the command to see if the CMUX is configurable

AT+CMUX=?

```
+CMUX: (0),(0),(5),(1-1509),(1-255),(0-100),(2-255),(1-255),(1-7)
```

OK

The AT command response indicates that the CMUX can be configurable, several parameters can be changed.

NOTICE:

Some Telit Modules can answer only with the first four ranges.

Enter the command to get the actual values of the CMUX parameters

AT+CMUX?

```
+CMUX: 0,0,5,128,10,3,30,0,0
```

OK

NOTICE:

Some Telit Modules can answer only with the first four parameters.

The fourth parameter is the Information Field Length: 128 octets (referring to the AT command above). In this case two octets are needed to constitute the Length Indicator, see 3.1. The user can use the +CMUX command to change the CMUX configuration on the module, see [4], [5].

NOTICE:

for modules having software version equal to 10.00.xxx, see Applicability Table, it is mandatory to set the CPU clock with the AT#CPUMODE=3 command when the frame size is greater than 127 bytes.
For Telit Module equipped with a not updated software version the CMUX protocol could not be configurable.

Enter the command to see if the CMUX is configurable

AT+CMUX=?

+CMUX: (0),(0)

OK

The CMUX is not configurable. In this case the **Maximum Frame Structure Length**, see Fig. 2, is equal to 133 octets, in accordance with it the **Information Field length** is 127 (less than 128 octets). Only one octet is needed to constitute the Length Indicator.

7.2. **V.24 Link**

For reader convenience hereafter is showed the V.24 link supported by the Telit Modules. The reader can compare the physical V.24 interface with the two V.24 octets provided by the CMUX protocol for each Virtual Channel:

- V24 Octet from DCE (Module) to DTE (Application), refer to Fig. 3
- V24 Octet from DTE (Application) to DCE (Module), refer to Fig. 4

![V.24 Link Diagram](image)

Fig. 8: Complete V.24 Link versus Telit Serial Port MUX Panel

- DSR: Data Set Ready
- CTS: Clear To Send
- DCD: Data Carrier Detect
- RI: Ring Indicator
- DTR: Data Terminal Ready
- RTS: Request to send
7.3. DTR Signal vs. CMUX Protocol

It is worth to remind that High → Low transition of the DTR signal causes the Module to exit the Multiplexed Mode. To avoid that and make available to the user the selection of one of the two CMUX implementations that can be provided by a Module, Telit has developed the following proprietary AT Command:

\[
\text{AT#CMUXMODE} = \langle \text{mode} \rangle
\]

In accordance with the response of the \text{AT#CMUXMODE}=? Command, you can know the features supported by your Telit Module concerning the interaction between the CMUX protocol implementation and DTR transition:

\[
\begin{align*}
\text{AT#CMUXMODE}=? \\
\#CMUXMODE: (0,1) \\
\text{OK}
\end{align*}
\]

You have a Telit Module equipped with a not updated software version.

\[
\begin{align*}
\text{AT#CMUXMODE}=? \\
\#CMUXMODE: (0,1,4,5) \\
\text{OK}
\end{align*}
\]

You have a Telit Module supporting all modes.

The table below summarizes the command functionalities in accordance with the used Telit Module and the \langle \text{mode} \rangle value selected by the user.

<table>
<thead>
<tr>
<th>\langle \text{mode} \rangle</th>
<th>DTR transition (H→L) causes:</th>
<th>Is activated a CMUX protocol that:</th>
<th>DTR transition (H→L) causes:</th>
<th>Is activated a CMUX protocol that:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 →</td>
<td>CMUX is closed</td>
<td>preserves backward compatibility</td>
<td>CMUX is closed</td>
<td>preserves backward compatibility</td>
</tr>
<tr>
<td>1 →</td>
<td>CMUX is closed</td>
<td>is more adherents to the Standard</td>
<td>CMUX is closed</td>
<td>is more adherent to the Standard</td>
</tr>
<tr>
<td>4 →</td>
<td>/</td>
<td>/</td>
<td>No actions on CMUX</td>
<td>preserves backward compatibility</td>
</tr>
<tr>
<td>5 →</td>
<td>/</td>
<td>/</td>
<td>No actions on CMUX</td>
<td>is more adherent to the Standard</td>
</tr>
</tbody>
</table>

Tab. 3 CMUXMODE (con’t)

Modes 4 and 5 have been introduced to manage the cases where the Application Processor moves the DTR signal to enter itself the Power Saving state.

\[3 \text{ Factory setting}\]
If the command result is ERROR, please refer to the Tab 4 to know the unique CMUX implementation provided by your Telit Module under test.

AT#CMUXMODE=?

ERROR

<table>
<thead>
<tr>
<th>Software Versions</th>
<th>CMUX implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.xx.xxx <= 10.00.002</td>
<td>preserves backward compatibility (see mode = 0)</td>
</tr>
<tr>
<td>12.xx.xxx</td>
<td>is more adherent to the Standard (see mode = 5)</td>
</tr>
</tbody>
</table>

Tab 4 CMUXMODE

NOTICE:
A new Application should be developed compliant with #CMUXMODE=1, where it is possible. Warning: the mode is not stored in NVM.
8. DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Products/SW Versions</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2012-02-15</td>
<td>/</td>
<td>The present Revision supersedes the CMUX User Guide, 30268ST10299A Rev. 5 – 2011-03-01 and all the previous revisions.</td>
</tr>
<tr>
<td>1</td>
<td>2012-06-18</td>
<td>/</td>
<td>Updated the Application Table. Added the AT#CPUMODE=3 command.</td>
</tr>
<tr>
<td>2</td>
<td>2012-07-05</td>
<td>/</td>
<td>Updated chapter 7.1. Updated Document History (Changes field of the Revision 0).</td>
</tr>
<tr>
<td>3</td>
<td>2013-02-15</td>
<td>/</td>
<td>Updated the Applicability Table. Detailed the use of the Break Octet in accordance with the #CMUXMODE and the used modules, chapter 3.1.1.</td>
</tr>
<tr>
<td>4</td>
<td>2014-03-06</td>
<td>/</td>
<td>Chapter 4: Modified the standard PSC command, and added a NOTICE related to Telit PSC command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Products added:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GE910-QUAD AUTO / 13.00.xx5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GE910-GNSS / 13.00.xx4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GL865-QUAD V3 / 16.00.xx3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GE910-QUAD V3 / 16.00.xx3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GE866-QUAD / 16.00.xx3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE910-EUR/EUD/12.00.xx4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE910-NAR/NAD/12.00.xx4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL865-EUR/EUD / 12.00.xx4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL865-NAR/NAD / 12.00.xx4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL865-N3G / 12.00.xx4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Updated the Applicability Table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2014-03-11</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2017-02-07</td>
<td>2017 Template applied</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2017-08-28</td>
<td>Product added: LE910C1-AP</td>
<td>Updated the Applicability Table.</td>
</tr>
</tbody>
</table>
SUPPORT INQUIRIES

Link to www.telit.com and contact our technical support team for any questions related to technical issues.