SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities*). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
The AZ C project integrates the lwIP stack. lwIP is a small independent implementation of the TCP/IP protocol suite that has been initially developed by Adam Dunkels. lwIP is licenced under the BSD licence:

Copyright (c) 2001-2004 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
APPLICABILITY TABLE

PRODUCTS

- UE910 SERIES
- HE910 SERIES
- LE910 V2 SERIES
- UE866 SERIES
- WE866

HSPA:
Application Version

WE.00.109-12

Stream Version
12.00.xx8-B016

LTE:
Application Version
WE.00.209-13

Stream Version
20.00.xx4
CONTENTS

NOTICE 2
COPYRIGHTS ... 2
COMPUTER SOFTWARE COPYRIGHTS 2
USAGE AND DISCLOSURE RESTRICTIONS 3
APPLICABILITY TABLE ... 5
CONTENTS .. 6

1. INTRODUCTION ... 9
 1.1. Scope .. 9
 1.2. Audience .. 9
 1.3. Contact Information, Support 9
 1.4. Text Conventions .. 10
 1.5. Related Documents .. 11
2. BUNDLE OVERVIEW .. 12
 2.1. Overview .. 12
3. SW ARCHITECTURE .. 13
 3.1. STATION ... 13
 3.2. HOTSPOT ... 14
4. SOFTWARE SETUP .. 16
 4.1. Module firmware flashing 16
 4.2 WiFi AppZone Application programming.................. 17
5. AT COMMANDS ... 25
 5.1. General commands .. 25
 5.1.1. #WIFISTART .. 25
 5.1.2. #WIFIMODE ... 26
 5.1.3. #WIFISCAN ... 26
 5.1.4. #WIFIPWR ... 27
 5.1.5. #WIFIGPIO ... 27
 5.1.6. #WIFISWVER .. 28
 5.1.7. #WIFISAV .. 28
 5.1.8. #WE ... 29
 5.2. Access Point mode commands 29
5.2.1. #WIFIAPCLIENTS ... 29
5.2.2. #WIFIAPMAC ... 29
5.2.3. #WIFIAPPHYCFG .. 30
5.2.4. #WIFIAPNETCFG .. 30
5.2.5. #WIFIANPPDPCFG ... 31
5.2.6. #WIFIAPMAXSTA ... 31
5.2.7. #WIFIPFWD ... 32
5.2.8. #WIFIDHCPRES ... 32
5.3. Station mode commands .. 34
5.3.1. #WIFISTAPHYCFG ... 34
5.3.2. #WIFISTANETCFG ... 34
5.3.3. #WIFISTAPING .. 35
5.3.4. #WIFISTASD ... 35
5.3.5. #WIFISTASCFG .. 36
5.4. Hot Spot mode commands .. 37
5.4.1. #WSD ... 37
5.4.2. #WSCFG ... 38
5.4.3. #WSCFGEXT ... 39
5.4.4. #WSRECV ... 40
5.4.5. #WSSEND ... 41
5.4.6. #WSO ... 41
5.4.7. #WSL ... 42
5.4.8. #WSLUDP ... 42
5.4.9. #WSA ... 43
5.4.10. #WSH ... 44
5.4.11. #WSS ... 44
5.4.12. #WSI ... 45
5.4.13. #WPING ... 46
5.4.14. #WSSENDUDP ... 47
5.5. Raw (transceiver) mode commands 49
5.5.1. #WRADIOPHYCFG ... 49
5.5.2. #WRADIOTXCFG ... 50
5.5.3. #WRADIORXCFG .. 51
5.5.4. #WRADIOTEST .. 52
5.5.5. #WRADIOSTOP ... 52
5.5.6. #WRADIOHIST .. 52
5.6. ME Error Result Code - +CME ERROR: <err> 54
5.7. URC messages .. 56

6. USE CASES EXAMPLES .. 57
 6.1. HOT SPOT commands sequence ... 57
 6.1.1. HotSpot Mode, Socket commands .. 58
 6.1.1.1. TCP client socket to a remote host using cellular network 58
 6.1.1.2. UDP client socket to a remote host using cellular network 59
 6.1.1.3. TCP client socket to a connected Wi-Fi station using Wi-Fi network 60
 6.1.1.4. TCP listening socket on any interface (cellular or Wi-Fi) 61
 6.1.1.5. TCP listening socket on cellular interface .. 62
 6.1.1.6. TCP listening socket on Wi-Fi interface .. 62
 6.1.1.7. UDP listening socket on any interface (cellular or Wi-Fi) 63
 6.1.1.8. UDP listening socket on cellular interface .. 64
 6.1.1.9. UDP listening socket on Wi-Fi interface .. 64
 6.2. STATION AT commands sequence .. 65

7. GLOSSARY AND ACRONYMS .. 66

8. DOCUMENT HISTORY .. 67
1. INTRODUCTION

1.1. Scope
This document gives an overview of xE910 in bundle with WE866 It explains how to connect a xE910 module + WE866 Short range module

1.2. Audience
This document is intended only for Telit customers that wants to set up a bundling application between xE910 + WE866.

1.3. Contact Information, Support
For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com

Alternatively, use:
http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:
http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements. Telit appreciates feedback from the users of our information.
1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.
1.5. Related Documents

1. Telit AppZone C User Guide, 80496ST10722A
2. Telit EVK2 User Guide, 1VV0300704 Rev. 19
3. WE866 Hardware user guide
4. Telit USB Driver Installer User Guide, 1V0301164 Rev. 7
5. Telit AT Commands Reference Guide, 80000ST10025a
6. Telit 3G Modules AT Commands Reference Guide, 80378ST10091A
7. Telit LE910 V2 Series AT Commands Reference Guide, 80446ST10707A
2. BUNDLE OVERVIEW

2.1. Overview

Telit Bundle solution integrates Cellular and WiFi technologies, allowing customers to manage both through a single module, with a single communication port and a single communication protocol.

Telit WE866 Bundle will make the connection between Cellular and WiFi easy.

Warning – on UE866-EU **only GPIO6 and GPIO7** can be used for HOST-IRQ signal
3. **SW ARCHITECTURE**

3.1. **STATION**

In this scenario the external MCU can select if the data can be sent to WiFi network or the cellular one.

In this case for the WiFi interface the module is acting as a station.

Below it is described the SW architecture running on the xE910 module.
3.2. HOTSPOT

The WiFi module broadcasts a local network for stations to connect to. Stations can open connections (e.g. HTTP, SMTP, …) and send data. The cellular forward the IP packets to the cellular radio (NAT). **AZ C example in under implementation for HE910 and LE910 V2.**

In this case the SW architecture is below
The WE866 is configured in MAC raw mode. All the packet MAC header include will be routed to the cellular module.

On AppZone framework a NAT layer of the IP packet has been implemented and they are routed through the cellular network. On the AppZone layer an AT layer has been implemented in order to manage both cellular and WiFi interface in order to enable/disable the HOTSPOT functionality.

Below an example of natting has been showed

```
Pub IP: 10.50.200.100
Local IP: 192.168.1.100
Default gat: 192.168.1.100
```

Warning – On LTE platform, AT#MTUSIZE=1500 **MUST be sent before starting the hot spot functionality** using AT#WIFISTART=1 command (see section 5.1)
4. SOFTWARE SETUP

Before starting any of the next steps please download from download zone the XFP and TATC tool.

Moreover it is strongly suggest to read the AppZone user guide at the below link

4.1. Module firmware flashing

Before start the flashing you have to install the USB module drivers.

Download the XFP tool and the USB driver from download zone

To flash the module, you will need the XFP tool, and possibly the USB drivers if you want to flash using USB cable.

You can find the XFP tool here:

And the Telit_USB_Driver_Win_Desktop_UF.00.05 here:

https://tcloud.telit.com/public.php?service=files&t=56ee1f87e5eb1f3ef45e81143b64a5b1

(You can select to install the drivers for all devices from the installer prompt, or just the family of the module you are using)

Once you have the software installed, you can run XFP. You will see something like below
Steps to follow (refer to the image above):

1) Select the USB connection and 921600 bps speed (if not present, simply type it manually)
2) Browse to the .bin file of the firmware stream.
2bis) Be sure that the module is turned OFF (for example, press the Reset/Hw shutdown button, or unplug the power supply) and the USB cable is connected to the interface
3) Click on the Program button, the tool will search for the module USB interface.
4) Turn on the module pressing the ON_OFF button; the tool will link it and start the flashing procedure. It will take a few minutes.
5) Once it is finished, the module will turn off. Turn it on again, its memory will be formatted on the first startup, and then the module will turn OFF again.
6) Turn the module on again. It is now ready.

4.2. WiFi AppZone Application programming.

Before starting the load of the application the first step is to have the dimension of the application firmware in bytes.

In order to have it, using the file browser go in the folder where the application is located and push right click on the application and as show in the picture memorize the size of the binary. In the example it is 336000 and filename is m2mapz.bin
After that, open TATC tool and connect it to the USB0 of the module and go to the tab M2M_AppZone. See below
Select the AT#M2MCHDIR and complete the command with AT#M2MCHDIR="MOD". This will mode in the MOD directory of the file system.
Now select the AT#M2MWRITE command and complete with AT#M2MWRITE=<filename>,<size>,<permission>.

In this example AT#M2MWRITE=m2mapz.bin,336000,1

After you send the AT#M2MWRITE command, a >>> prompt will be showed like the image below:
Push the transfer button indicated with a circle red in next image select the application to download and push ok and the transfer will start.

The transfer pop-up will appear
After the download will finish, the application need to be set as the application that need to start at the next start-up.

Select the AT#M2MRUN and complete with AT#M2MRUN=2, <filename>, in the example is AT#M2MRUN=2,m2mapz.bin
Now the application can start and for this select AT+M2M command and complete it with AT+M2M=4,10 this means that the application will start 10 seconds after start-up.

See below the next image.

Now the application started and you can use it in STATION or HOTSPOT module.

Follow the instruction in the next paragraph for the details

Warning – If the CS1801a bundling board is used, the following AT commands must be sent at the first boot to preset ONOFF signal and enable for level shifter

AT#GPIO=3,1,1,1
AT#GPIO=4,0,1,1

Note: The application trace log outputs on USB3.
5. AT COMMANDS

5.1. General commands

5.1.1. #WIFISTART

#WIFISTART – enable/disable WLAN

AT#WIFISTART=<mode>

Set command enable/disable WLAN

Parameters:

- `<mode>` - int type, status mode.
 - 0 – disable
 - 1 – enable

Note: enable WLAN will start it as Station mode by default unless configure prior to start (AT#WIFIMODE) or configuration was stored in NVM with AT#WIFISAV.

Note: The command will return immediately and generate URC messages depending on the configuration and events. Immediate response can be:

AP mode

INITIALIZING AP..<CRLF><CRLF>OK<CRLF>

Station Mode

CONNECTING TO AP..<CRLF><CRLF>OK<CRLF>

AP Mode URCs:

- #WIFI: WAITING STATIONS (AcT X)
 - Will be printed when the AP is ready to accept connections from stations.
 - X value is the Access Technology in use for Cellular connection
- #WIFI: A Station Connected to AP
- #WIFI: A Station disconnected from AP
- #WIFI: AP OFF

Station Mode URCs:

- #WIFI: STA Connected to external AP
- #WIFI: STA OFF

AT#WIFISTART?

Read command returns the currently WLAN status in the format:

#WIFISTART: <mode>

Where:

- `<mode>`
 - 0 – WLAN off
 - 1 – WLAN on

AT#WIFISTART=?

Test command returns the supported range of values for parameter `<mode>`.
#WIFIMODE

#WIFIMODE – change mode: access point/client

<table>
<thead>
<tr>
<th>Set command</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| AT#WIFIMODE=<mode> [,<auto-start>] | Set command change WLAN mode | **<mode>** - operation mode. 0 – Access point mode 1 – Station mode
<auto-start> - auto start configuration. 0 – No autostart 1 – AutoStart at next reboot (equivalent to call AT#WIFISTART=1 |

Note: to apply AutoStart configuration, AT#WIFISAV command must be called.

<table>
<thead>
<tr>
<th>Read command</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIMODE?</td>
<td>Read command returns the currently mode status in the format: #WIFIMODE: <mode>,<auto-start></td>
<td></td>
</tr>
</tbody>
</table>

AT#WIFIMODE=? Test command returns the supported range of values for parameters **<mode>** and **<auto-start>**.

#WIFISCAN

#WIFISCAN – Shows a list of available networks

<table>
<thead>
<tr>
<th>Set command</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| AT#WIFISCAN=<mode> | Set command will return the parameters for available WiFi networks. | **<mode>** - operation mode. 0 – Scan visible networks only 1 – Scan also hidden networks
#WIFISCAN: SSID: **<SSID>** SEC TYPE: **<security_type>** \tBSSID: **<BSSID>** \tRSSI: **<RSSI>**dBm **<Hidden>** |

for every retrieve Network, where:

<SSID>: Visible Access Point SSID
<security_type>: One of “OPEN” “WEP” “WPA” “WPA2”
<BSSID>: Access Point MAC address
<RSSI>: AP received signal level in dBm
<Hidden> “(HIDDEN)” if the WiFi networks has a hidden SSID, empty string otherwise.

<table>
<thead>
<tr>
<th>Execution command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFISCAN</td>
<td>Execution command returns the same output of set command with mode= 0 (do not print Hidden networks)</td>
</tr>
</tbody>
</table>
5.1.4. #WIFIPWR

#WIFIPWR – Set Tx power level

AT#WIFIPWR=

- **AT#WIFIPWR**=**<mode>**, **<dB>**
 - Set command sets the Tx power for either AP and STATION modes.
 - **Parameters:**
 - **<mode>** -
 - 0 – Access point mode
 - 1 – Client (Station) mode
 - **<dB>** - Number between 0-15, as dB offset from maximum power
 - 0 will set maximum power

- **AT#WIFIPWR?**
 - Read command returns the current Tx power
 - **#WIFIPWR**: **<mode>**, **<dB>**
 - With the same ranges and values of set command.

- **AT#WIFIPWR=?**
 - Test command reports supported values for parameters **<mode>** and **<dB>**.

5.1.5. #WIFIGPIO

#WIFIGPIO – change the Cellular -WiFi communication GPIOs

AT#WIFIGPIO=

- **AT#WIFIGPIO**=**<nHib>**, **<nReset>**, **<HIrq>**, **<SPI_nCS>**
 - Set command changes GPIOs configuration
 - **Parameters:**
 - **<nHib>** - WiFi module hibernate pin
 - **<nReset>** - WiFi module reset pin
 - **<HIrq>** - WiFi Host Interrupt signal
 - **<SPI_nCS>** - SPI chip select signal
 - Default values are the ones for bundling board:
 - **#WIFIGPIO**: 9,6,7,8
 - **Notes:**
 - To keep the previous value, set a parameter to 0
e.g. to change SPI_nCS only:
 - **AT#WIFIGPIO=0,0,0,3**

- **AT#WIFIGPIO?**
 - Read command returns the currently GPIOs configuration in the format:
 - **#WIFIGPIO**: **nHib,nReset,HIrq,SPI_nCS**

- **AT#WIFIGPIO=?**
 - Test command returns the supported range of values for all GPIOs.
5.1.6. #WIFISWVER

#WIFISWVER – Software version

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFISWVER</td>
<td>Execution command returns the WiFi application software version in format
<code>WE.MM.ppm</code>
Where
<code>MM</code> is the major release number
<code>m</code> is the minor release number
<code>pp</code> is the platform (10: 3G, 20: 4G)</td>
</tr>
<tr>
<td>AT#WIFISWVER?</td>
<td>Read command returns WiFi application software version, as the execution command</td>
</tr>
</tbody>
</table>

5.1.7. #WIFISAV

#WIFISAV – Store current configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFISAV</td>
<td>Execution will store the current configuration in NVM. Parameters are stored in groups:
1) All of AP and STA CFG commands, AT#WIFIMODE parameters
2) Port Forwarding entries currently set.
3) DHCP IP reservation entries currently set.
4) Socket Options (see #WSCFG and #WSCFGEXT commands)</td>
</tr>
<tr>
<td>AT#WIFISAV=<op> [,<file>]</td>
<td>Set command will execute the requested operation
Parameters:
<code><op></code>: only 0 is supported (delete Application configuration group)
<code><file></code>: select which configuration file to be deleted. Admitted values:
0 – Delete ALL configuration groups
1 – Delete Application configuration group only
2 – Delete Port Forwarding configuration group only
3 – Delete DHCP IP reservation configuration group only
4 – Delete socket options group only</td>
</tr>
<tr>
<td>AT#WIFISAV=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>
5.1.8. #WE

#WE – change the echo level setup

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WE=<level></td>
<td>Set command changes echo level configuration. Parameters: <code><level></code> 0 – disable echo for custom commands (as #WSSEND 1 – enable echo for custom commands</td>
</tr>
<tr>
<td>Notes: Setting is not stored in NVM</td>
<td></td>
</tr>
<tr>
<td>AT#WE</td>
<td>Execution command disables echo (same as #WE=0)</td>
</tr>
<tr>
<td>AT#WE=?</td>
<td>Test command returns the supported range of values for parameter</td>
</tr>
</tbody>
</table>

5.2. Access Point mode commands

5.2.1. #WIFIAPCLIENTS

#WIFIAPCLIENTS – List of connected clients

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPCLIENTS</td>
<td>Execution command retrieves the list of connected clients (up to 4 possible) and returns it in the formats</td>
</tr>
<tr>
<td>#WIFIAPCLIENTS - Connected Stations Info: No Station Connected</td>
<td>If no station is connected.</td>
</tr>
<tr>
<td>#WIFIAPCLIENTS - Connected Stations Info: [Host: <HostName></td>
<td></td>
</tr>
<tr>
<td>Where</td>
<td></td>
</tr>
<tr>
<td><HostName> is the Station hostname, provided to DHCP server during connection</td>
<td></td>
</tr>
<tr>
<td><MacAddress> is Station MAC Address</td>
<td></td>
</tr>
<tr>
<td><LeasedIp> is the IP address the DHCP server leased to connected station.</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>-In case HostName is not provided, the first part of the row will not be printed</td>
</tr>
<tr>
<td>-In case the station is using static IP, the Leased IP part of the row will not be printed.</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2. #WIFIAPMAC

#WIFIAPMAC – Retrieve the WiFi MAC address

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPMAC</td>
<td>Execution command retrieves the WiFi Module MAC address in the format:</td>
</tr>
<tr>
<td>#WIFIAPMAC: XX:XX:XX:XX:XX:XX</td>
<td></td>
</tr>
</tbody>
</table>
5.2.3. #WIFIAPPHYCFG

#WIFIAPPHYCFG – Set Physical configuration of AP

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPPHYCFG=<SSID>, <Security>, <PWD>, <Region>, <Channel> [,<Hidden>]</td>
<td>Set command sets the Access Point’s Physical Parameters:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SSID - Alphanumeric string containing up to 32 bytes (default: Telit_<last 4 cellular IMEI cyphers>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Security - Integer values 0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PWD - Alphanumeric characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(default: password)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Region - String. Available options:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Channel - Integer values. Ranges depend on Region:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(default: 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hidden - AP SSID option</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AT#WIFIAPPHYCFG?

Read command returns the current Physical Parameters:

| #WIFIAPPHYCFG: <SSID>, <Security>, <PWD>, <Region>, <Channel>, <Hidden> |

AT#WIFIAPPHYCFG=?

Test command reports supported values for the parameters.

5.2.4. #WIFIAPNETCFG

#WIFIAPNETCFG – Set Network configuration of AP (WiFi will reboot to complete configuration)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPNETCFG=<ip> [,<DNS> [,<ip_start> [,<ip_last> [,<ip_lease_time>]]]]</td>
<td>Set command sets the Access Point’s Network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ip - IPV4 address, string dotted format (xxx.xxx.xxx.xxx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DNS - IPV4 DNS Server, string dotted format (default: 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ip_start - DHCP start address last octet (1-255) (default: 10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ip_last - DHCP last address last octet (1-255) (default: 20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ip_lease_time - IP address lease time (seconds) (default: 3600)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 bits unsigned integer.</td>
</tr>
</tbody>
</table>

Notes:

- **DNS** - if not set, cellular DNS will be used
The DSN address is updated only after a AT#WIFISTART=1 is executed, so the Read command will return the previously set value.

WiFi Network mask is set to 255.255.255.0

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPNETCFG?</td>
<td>Read command returns the current Network Parameters:</td>
</tr>
<tr>
<td></td>
<td>#WIFIAPNETCFG:</td>
</tr>
<tr>
<td></td>
<td><ip>,<DNS>,<ip_start>,<ip_last>,<ip_lease_time></td>
</tr>
<tr>
<td>AT#WIFIAPNETCFG=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>

5.2.5. #WIFIAPPDPCFG

#WIFIAPPDPCFG – Set AP mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPPDPCFG=<apn>[,<username>][,<password>][,<cid>]</td>
<td>Execution command set the following parameter in the AP mode:</td>
</tr>
<tr>
<td></td>
<td>Parameters:</td>
</tr>
<tr>
<td></td>
<td><apn> - PDP context APN to be used in the connection, string type, max length: 139 bytes</td>
</tr>
<tr>
<td></td>
<td><username> - PDP context username to be used in the connection, string type, max length: 139</td>
</tr>
<tr>
<td></td>
<td><password> - PDP context password to be used in the connection, string type, max length: 139</td>
</tr>
<tr>
<td></td>
<td><cid> PDP context ID to be used for the connection. Defaults to AppZone internal CID. Refer to AT+CGDCONT=? Command for CID range on cellular platform in use.</td>
</tr>
<tr>
<td>AT#WIFIAPPDPCFG?</td>
<td>Read command returns the current cellular’s parameters and IP address:</td>
</tr>
<tr>
<td></td>
<td>#WIFIAPPDPCFG:</td>
</tr>
<tr>
<td></td>
<td><apn>,<username>,<****>,<cid>,"<IP_address>"</td>
</tr>
<tr>
<td></td>
<td>Where <IP_address> will be 0.0.0.0 if cellular connection is not active, the current IP address otherwise</td>
</tr>
<tr>
<td>AT#WIFIAPPDPCFG=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>

5.2.6. #WIFIAPMAXSTA

#WIFIAPMAXSTA – Set Physical configuration of AP

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPMAXSTA=<max_sta></td>
<td>Set command sets the Access Point’s max number of supported connected Stations at a time.</td>
</tr>
<tr>
<td></td>
<td>Parameters:</td>
</tr>
<tr>
<td></td>
<td><max_sta> - Integer value (1-4), indicating the new value to be used. Cannot be set while AP is running.</td>
</tr>
<tr>
<td>AT#WIFIAPPHYCFG?</td>
<td>Read command returns the current allowed maximum connected stations</td>
</tr>
</tbody>
</table>
#WIFIAPPHYCFG: <max_sta>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIAPPHYCFG=?</td>
<td>Test command reports supported values for the parameter.</td>
</tr>
</tbody>
</table>

5.2.7. #WIFIPFWD

#WIFIPFWD – Set Port Forwarding configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIPFWD=<opcode>, <proto>, <in_ip>, <in_port> [,<out_ip> [,<out_port>]]</td>
<td>Execution command will manage port forwarding entries: Parameters: <opcode> - operation to be performed: 0: add entry 1: remove existing entry <proto> - protocol for the operation 0: TCP 1: UDP <in_ip> - input IP address on the cellular network (the remote host IP). can be 0 or a valid IP in the format xxx.xxx.xxx.xxx <in_port> the input port to be forwarded in the local network. valid values: 1-65535 <out_ip> - local IP address in the WiFi network for the destination node. Incoming packets matching the input parameters will be redirected to this IP address. It must be a valid IP in the format xxx.xxx.xxx.xxx. Can be omitted when removing an existing entry <out_port> local destination port for the redirect. If omitted, <in_port> will be used. Valid values: 1-65535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIPFWD=?</td>
<td>Read command returns the current port forwarding configuration in the format: #WIFIPFWD: TCP ENTRIES xxx.xxx.xxx.xxx:mmmmm --> yyy.yyy.yyy.yyy:nnnnn UDP ENTRIES xxx.xxx.xxx.xxx:mmmmm --> yyy.yyy.yyy.yyy:nnnnn Where: xxx.xxx.xxx.xxx represents the input IP addresses, mmmm is the input port for every entry yyy.yyy.yyy.yyy represents the output IP addresses, nnnnn is the output port for every entry Note: if the same input port is used for the same protocol, an error will be returned. To update the entry, first delete it and add it again</td>
</tr>
</tbody>
</table>

5.2.8. #WIFIDHCPRES

#WIFIDHCPRES – Set DHCP IP Reservation

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WIFIDHCPRES=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>
AT#WIFIDHCPRES=<opcode>, <mac>, [,<res_ip>]

Execution command will manage DHCP IP reservation entries:

Parameters:
- `<opcode>` - operation to be performed:
 0: add entry
 1: remove existing entry
- `<mac>` - MAC Address in the format xx:xx:xx:xx:xx:xx of the WiFi Station for which reserve a static IP address.
- `<res_ip>` - static IP address to be reserved for the specified MAC address. It is the least significant byte of the address in the format xxx. Must be in the range 1-254 and must be different from AP IP address. The other 3 bytes of the address will be the same as the configured AP subnet.

Note:
Entries can be added or removed only when AP is not running

AT#WIFIDHCPRES?

Read command returns the current DHCP reservation configuration in the format:

```
#WIFIDHCPRES:
```

Where:
xx:xx:xx:xx:xx:xx represents the MAC addresses and yyy.yyy.yyy.yyy represents the reserved IP addresses for every entry

Note:
if the same IP is used for another entry, an error will be returned

AT#WIFIDHCPRES=?

Test command reports supported values for the parameters.
5.3. Station mode commands

5.3.1. #WIFISTAPHYCFG

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WIFISTAPHYCFG</td>
<td>Set Physical configuration of Station (WiFi will reboot to complete configuration)</td>
</tr>
</tbody>
</table>

Set command sets the Access Point’s Physical Parameters

Parameters:
- `<ESSID>` - Alphanumeric string containing up to 32 bytes (default: AP)
- `<Method>` - Integer values 0-2 (default: 2)
 - 0 – Open
 - 1 – WEP
 - 2 – WPA & WPA2
- `<PWD>` - Alphanumeric characters. (default: password)
 - Length:
 - 8-63 for WPA
 - 5-13 for WEP

AT#WIFISTAPHYCFG?

Read command returns the current Physical Parameters:

#WIFISTAPHYCFG: “<ESSID>”,<Method>”,<PWD>”

AT#WIFISTAPHYCFG=?

Test command reports supported values for the parameters.

5.3.2. #WIFISTANETCFG

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WIFISTANETCFG</td>
<td>Set Network configuration of Station (WiFi will reboot to complete configuration)</td>
</tr>
</tbody>
</table>

Set command sets the Station’s Network Parameters all in the dotted format -

Parameters:
- `<Auto>` - 0 – Automatic DHCP settings (factory default)
 - 1 – Manual DHCP settings with the following parameters:
- `<ip>` - IPV4 address, string dotted format
- `<Mask>` - IPV4 Net Mask, string dotted format
- `<GateWay>` - IPV4 GateWay, string dotted format
- `<DNS>` - IPV4 DNS Server, string dotted format

Note:
- `<Auto>` - if ‘0’, network layer parameters will be automatically retrieved
- `<GateWay>` - if not set, `<ip>` will be used
- `<DNS>` - if not set, `<ip>` will be used

AT#WIFISTANETCFG?

Read command returns the current Network Parameters. If DHCP is enabled and Station is connected, or Static IP configuration is used

#WIFISTANETCFG: `<dhcp_on>,<ip>,<Mask>,<GateWay>,<DNS>`
Where:
- `<dhcp_on>` - 1 - DHCP client is enabled.
- 0 - Static configuration is used.
Otherwise,
#WIFISTANETCFG: DHCP ENABLED

<table>
<thead>
<tr>
<th>AT#WIFISTANETCFG=?</th>
<th>Test command reports supported values for the parameters</th>
</tr>
</thead>
</table>

5.3.3. **#WIFISTAPING**

#WIFISTAPING – Ping WiFi Gateway or remote server

| AT#WIFISTAPING=<type> [,<host>, [,<interval>, [,<timeout>], [,<attempts>]]] | Execution command sets socket configuration:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
<td></td>
</tr>
<tr>
<td><code><type></code></td>
<td>- The ping type</td>
</tr>
<tr>
<td>0</td>
<td>- Ping the LAN Gateway</td>
</tr>
<tr>
<td>1</td>
<td>- Ping a remote host (using the following parameters)</td>
</tr>
<tr>
<td><code><host></code></td>
<td>- Address of the remote host: IPV4</td>
</tr>
<tr>
<td>or host name</td>
<td></td>
</tr>
<tr>
<td><code><interval></code></td>
<td>- Time interval between Pings in milliseconds</td>
</tr>
<tr>
<td><code><timeout></code></td>
<td>- Timeout for every ping. In milliseconds (0-65535)</td>
</tr>
<tr>
<td><code><attempts></code></td>
<td>- number of ping attempts</td>
</tr>
</tbody>
</table>

Note: if the module is in AP mode, an ERROR will be returned.

<table>
<thead>
<tr>
<th>#WIFISTAPING=?</th>
<th>Test command reports supported values for the parameters.</th>
</tr>
</thead>
</table>

5.3.4. **#WIFISTASD**

#WIFISTASD – Send /receive data to/from remote server in Station mode

| AT#WIFISTASD=<socketId>, <protocol>, <rPort>, <rAddress> [,<closureType>, [<lPort>, [<connMode>]]] | Execution command send data to remote server according to the following parameters:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
<td></td>
</tr>
<tr>
<td><code><socketId></code> - Socket connection identifier 1..5</td>
<td></td>
</tr>
<tr>
<td><code><protocol></code> - 1 – TCP</td>
<td>2 – UDP</td>
</tr>
<tr>
<td><code><rPort></code> - Port of the remote host</td>
<td></td>
</tr>
<tr>
<td><code><rAddress></code> - Address of the remote host: IPV4 or host name</td>
<td></td>
</tr>
<tr>
<td><code><closureType></code> - UNSUPPORTED</td>
<td></td>
</tr>
<tr>
<td><code><lPort></code> - local port to be used for UDP sockets (ignored for TCP connections)</td>
<td></td>
</tr>
<tr>
<td><code><connMode></code> - Connection mode</td>
<td>0 - online mode connection (default)</td>
</tr>
<tr>
<td>1 - command mode connection</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- `<connMode>` - only online mode supported
- `<lPort>` - Ignored for TCP connections.
No quotes are needed

Note: When the command execution is successful the module will enter in online data mode. The intermediate result code CONNECT is received. After the CONNECT, the socket can be closed using the escape sequence (+++): the module moves back to command mode and a NO CARRIER is returned.

Any data incoming from the AT interface will be sent through the socket, and any response from remote host will be showed on the AT interface until the socket is open.

<table>
<thead>
<tr>
<th>AT#WIFISTASD=?</th>
<th>Test command reports supported values for the parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WIFISTASD:</td>
<td>(1-5),(0-1),(1-65535),(xxx.xxx.xxx.xxx),(0-1),(1-65535),(0-1)</td>
</tr>
</tbody>
</table>

5.3.5. #WIFISTASCFG

#WIFISTASCFG – Sockets configuration in Station mode

<table>
<thead>
<tr>
<th>#WIFISTASCFG=<socketId>,</th>
<th>Set command sets socket configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td><cid>,</td>
<td>Parameters:</td>
</tr>
<tr>
<td>[,<packet_size>,</td>
<td><socketId> - Socket connection identifier 1..5</td>
</tr>
<tr>
<td>[,<max_idle_to>,</td>
<td><cid> - Context Id – UNSUPPORTED</td>
</tr>
<tr>
<td>[,<conn_to>,]</td>
<td><packet_size> - Sending max packet size. UNSUPPORTED</td>
</tr>
<tr>
<td>[,<tx_to>],</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - no timeout</td>
</tr>
<tr>
<td></td>
<td>1..65535 - timeout value in seconds (default: 90 seconds)</td>
</tr>
<tr>
<td></td>
<td><conn_to> - connection timeout. If a connection cannot be established within this timeout period, an error will be raised.</td>
</tr>
<tr>
<td></td>
<td>UNSUPPORTED, defaults to 10 seconds</td>
</tr>
<tr>
<td></td>
<td><tx_to> - data sending timeout; UNSUPPORTED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AT#WIFISTASCFG?</th>
<th>Read command returns the current Sockets state:</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WIFISTASCFG:</td>
<td><socketId>, <cid>, <packet_size>, <max_idle_to>, <conn_to>, <tx_to></td>
</tr>
<tr>
<td></td>
<td>For every socketId [1-5]</td>
</tr>
</tbody>
</table>

| #WIFISTASCFG=? | Test command reports supported values for the parameters. |
5.4. Hot Spot mode commands

5.4.1. #WSD

| AT#WSD=<socketId>,<protocol>,<rPort>,<rAddress>[,<closureType>],<lPort>[,<connMode>][,<interface>][]] | \n|---|---|

- **#WSD** – Socket dial in Hot Spot mode

 Set command opens a socket to a remote host (while in hot spot mode) according to the following parameters:

 Parameters:
 - `<socketId>` - Socket connection identifier. 1-5 available
 - `<protocol>` - 0 – TCP
 - 1 – UDP
 - `<rPort>` - Port of the remote host
 - `<rAddress>` - Address of the remote host: IPV4 or host name
 - `<closureType>` - for future use, keep to 0 (immediate closure)
 - `<lPort>` - local port to be used for UDP sockets (ignored for TCP connections)
 - `<connMode>` - Connection mode
 - 0 - online mode connection (default)
 - 1 - command mode connection
 - `<interface>` - 1 – Cellular (open socket to remote host)
 - 2 – WiFi (open socket to connected WiFi station)

 Notes:
 - `<lPort>` - Ignored for TCP connections.
 - `<rAddress>` - No quotes are needed

If called when in Station mode, an error will be returned.

Note: unless otherwise specified, the meaning and default values/ranges for the parameters are the same of **AT#SD** command. Refer to §5.

Note: if `<connMode>` is set to **online mode** connection, and the command is successful, the module will enter in online data mode and the intermediate result code CONNECT will be displayed.

The socket can be suspended using the escape sequence (+++): the module moves back to **command mode** and a **OK** response is returned after the suspension. After suspension, it is possible to resume **online mode** it in every moment (unless the socket inactivity timer timeouts, see **#WSCFG**) by using the **#WSO** command with the corresponding `<socketId>`.

Any data incoming from the AT interface will be sent through the socket, and any response from remote host will be showed on the AT interface until the socket is open (and until the socket inactivity timer timeouts, see **#WSCFG**).

Note: if `<connMode>` is set to **command mode** connection and the command is successful, the socket is opened and the result code **OK** is displayed.
Note: if there are input data arrived through a connected socket and not yet ready because the module entered command mode before reading them (after #WSD has been issued with <connMode> set to command mode connection), these data are buffered and the WSRING URC (WSRING presentation format depends on the last #WSCFGEXT setting) will be received; it is possible to read these data afterwards issuing #WSRECv. Under the same hypotheses, It is possible to send data while in command mode issuing #WSSEND.

Note: closure of the socket (#WSH) must be done on the same instance on which the socket was opened through #WSD.

AT#WSD=?
Test command reports supported values for the parameters.

5.4.2. #WSCFG

#WSCFG – Socket configuration in Hot Spot mode

#WSCFG=<socketId>,
<cid>,
<packet_size>,
<max_idle_to>,
<conn_to>,
<tx_to>

Set command sets socket configuration:

Parameters:
<socketId> - Socket connection identifier. 1-5 available
<cid> - Context Id – unused, keep to 0
<packet_size> - packet size to be used by the TCP/UDP/IP stack for data sending.
0 - select automatically default value (300).
1..1500 - packet size in bytes.
<max_idle_to> - exchange timeout in online mode. If there is no data exchange within this period, the connection will be closed.
0 - no timeout
1..65535 - timeout value in seconds (default: 90 seconds)
<conn_to> - connection timeout. If a connection cannot be established within this timeout period, an error will be raised.
10..1200 - timeout value in hundreds of milliseconds (default 600)
<tx_to> - data sending timeout; Unused, keep to 0.

Note: if not otherwise specified, parameters have the same meaning and range of AT#SCFG

AT#WSCFG?
Read command returns the current Sockets configuration:

#WSCFG:
<socketId>,
<cid>,
<packet_size>,
<max_idle_to>,
<conn_to>,
<tx_to>

For every available socket id

#WSCFG=?
Test command reports supported values for the parameters.
#WSCFGEXT

#WSCFGEXT – Socket extended configuration in Hot Spot mode

Set command sets socket extended configuration:

Parameters:

- `<socketId>` - Socket connection identifier. 1-5 available
- `<srMode>` - SRing unsolicited mode
 - 0 - Normal (default): `WSRING : <connId>` where `<connId>` is the socket connection identifier
 - 1 – Data amount: `WSRING : <connId>,<recData>` where `<recData>` is the amount of data received on the socket connection number `<connId>`
 - 2 - Data view: not available
 - 3 – Data view with UDP datagram informations: not available
- `<recvDataMode>` - data view mode for received data in command mode (`AT#WSRECV` or `<srMode> = 2`)
 - 0- text mode (default)
 - 1- hexadecimal mode
- `<keepalive>` - unused, keep to 0 (Deactivated)
- `<ListenAutoRsp>` - unused, keep to 0 (Deactivated)
- `<sendDataMode>` - data mode for sending data in command mode (`AT#WSSEND`)
 - 0 - data represented as text (default)
 - 1 - data represented as sequence of hexadecimal numbers (from 00 to FF)
 Each octet of the data is given as two IRA character long hexadecimal number

Note: if not otherwise specified, parameters have the same meaning and range of `AT#SCFGEXT`

AT#WSCFGEXT?

Read command returns the current socket extended configuration for all available sockets, in the format:

```
#WSCFGEXT:
<socketId>,<srMode>,<datMode>,<keepalive>,
<ListenAutoRsp>,<sendDataMode><CR><LF>
```

For every available socket id

#WSCFGEXT=?

Test command reports supported values for the parameters.
5.4.4. #WSRECV

#WSRECV – Socket send in command mode in Hot Spot mode

<table>
<thead>
<tr>
<th>#WSRECV=\langle socketId\rangle, <maxByte>, [UDPInfo]</th>
<th>Set command permits the user to read data arrived through a connected socket, but buffered and not yet read because the module entered command mode before reading them; the module is notified of these data by a WSRING URC, whose presentation format depends on the last #WSCFGEXT setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
<td>< socketId > - Socket connection identifier. 1-5 available
 <maxByte> - max number of bytes to read 1..1500
 <UDPInfo> unused.</td>
</tr>
<tr>
<td>Note: issuing #WSRECV when there’s no buffered data raises an error.</td>
<td></td>
</tr>
<tr>
<td>Note: if not otherwise specified, parameters have the same meaning and range of AT#SRECV</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#WSRECV=?</th>
<th>Test command reports supported values for parameters</th>
</tr>
</thead>
</table>

Example

WSRING URC (<srMode> be 0, <dataMode> be 0) telling data have just come through connected socket identified by <socketId>=1 and are now buffered

WSRING: 1

Read in text format the buffered data

AT#WSRECV=1,20
#WSRECV: 1,11
Test string

OK

WSRING URC (<srMode> be 1, <dataMode> be 1) telling 11 bytes data have just come through connected socket identified by <socketId>=1 and are now buffered

WSRING: 1,11

Read in hexadecimal format the buffered data

AT#WSRECV=1,11
#WSRECV: 1,11
54657374207374726967
OK
5.4.5. #WSSEND

#WSSEND – Socket send in command mode in Hot Spot mode

#WSSEND=socketId

Set command permits, while the module is in **command mode**, to send data through a connected socket.

Parameters:

socketId - Socket connection identifier. 1-5 available

The device responds to the command with the prompt `<greater_than><space>` and waits for the data to send.

To complete the operation send `Ctrl-Z` char (0x1A hex); to exit without writing the message send `ESC` char (0x1B hex).

If data are successfully sent, then the response is **OK**. If data sending fails for some reason, an error code is reported.

Note: the maximum number of bytes to send is 1500 bytes; trying to send more data will cause the surplus to be discarded and lost.

Note: it’s possible to use **#WSSEND** only if the connection was opened by **#WSD**, else an error is returned.

Note: a byte corresponding to BS char (0x08 hex) is treated with its corresponding meaning; therefore previous byte will be cancelled (and BS char itself will not be sent)

Note: if not otherwise specified, parameters have the same meaning and range of AT#SSEND

#WSSEND=?

Test command reports supported values for the parameter `<socketId>`.

Example

Send data through socket number 1

```
AT#WSSEND=1
>Test<CTRL-Z>
OK
```

5.4.6. #WSO

#WSO – Socket Restore in Hot Spot mode

#WSO=socketId

Set command resumes the direct interface to a socket connection which has been suspended by the escape sequence.

Parameters:

socketId - Socket connection identifier. Only 1 available

#WSO=?

Test command reports supported values for the parameters.
#WSL – Socket listen in Hot Spot mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| AT#WSL=<socketId>,<listenState>,<listenPort>[,<closureType>][,<interface>]| Set command opens a TCP socket listening (while in hot spot mode) for an incoming connection on a specified port. **Parameters:**
- `<socketId>` - Socket connection identifier. 1-5 available
- `<listenState>` -
 - 0 – Closes socket listening
 - 1 – Starts socket listening
- `<listenPort>` - 1..65535 Local listening port
- `<closureType>` - for future use, keep to 0 (immediate closure)
- `<interface>` -
 - 0 – Any interface (Default)
 - 1 – Cellular (open socket to remote host)
 - 2 – WiFi (open socket to connected WiFi station)

Note:
If called when in Station mode, an error will be returned.

Note: if successful, the command returns OK.
Note: when a TCP connection request comes on the input port, an URC is received:
\texttt{WSRING : <connId>}

AT#WSA can be used to accept the connection or AT#WSH to refuse it

Note: unless otherwise specified, the meaning and default values/ranges for the parameters are the same of AT#SL command. Refer to §5.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| AT#WSL=? | Read command returns the currently listening TCP sockets.

AT#WSL=? | Test command reports supported values for the parameters.

#WSLUDP – Socket listen in Hot Spot mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| AT#WSLUDP=<socketId>,<listenState>,<listenPort>[,<interface>]| Set command opens an UDP socket listening (while in hot spot mode) for an incoming connection on a specified port. **Parameters:**
- `<socketId>` - Socket connection identifier. 1-5 available
- `<listenState>` -
 - 0 – Closes socket listening
 - 1 – Starts socket listening
- `<listenPort>` - 1..65535 Local listening port
- `<interface>` -
 - 0 – Any interface (Default)
 - 1 – Cellular (open socket to remote host)
 - 2 – WiFi (open socket to connected WiFi station)

Note:
If called when in Station mode, an error will be returned.
Note: if successful, the command returns OK.

Note: when a UDP connection request comes on the input port, an URC is received:

WSRING : <connId>

AT#WSA can be used to accept the connection or AT#WSH to refuse it

Note: unless otherwise specified, the meaning and default values/ranges for the parameters are the same of AT#SLUDP command. Refer to §5.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WSLUDP?</td>
<td>Read command returns the currently listening UDP sockets.</td>
</tr>
<tr>
<td>AT#WSLUDP=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>

5.4.9. #WSA

#WSA – Socket dial in Hot Spot mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WSA=<socketId> [,<connMode>]</td>
<td>Set command accepts an incoming socket connection after an URC WSRING: <socketId> (while in hot spot mode)</td>
</tr>
</tbody>
</table>

Parameters:

- `<socketId>` - Socket connection identifier. 1-5 available
- `<connMode>` - Connection mode
 - 0 - online mode connection (default)
 - 1 - command mode connection

Note:
If called when in Station mode, an error will be returned.

Note: unless otherwise specified, the meaning and default values/ranges for the parameters are the same of AT#SA command. Refer to §5.

Note: the WSRING URC must be a consequence of a #WSL issue.

Note: setting the command before to having received a WSRING will result in an ERROR indication, giving the information that a connection request has not yet been received.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WSA=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>
5.4.10. #WSH

#WSH – Socket Shutdown in Hot Spot mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WSH=<socketId></td>
<td>Set command is used to close a socket.</td>
</tr>
<tr>
<td>Parameter:</td>
<td><socketId> - Socket connection identifier. 1-5 available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WSH=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>

5.4.11. #WSS

#WSS – Socket Status in Hot Spot mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WSS[=<socketId>]</td>
<td>Execution command reports the current status of the socket:</td>
</tr>
<tr>
<td>Parameter:</td>
<td><socketId> - Socket connection identifier. 1-5 available</td>
</tr>
</tbody>
</table>

The response format is:

#WSS:

<socketId>,<state>,<locIP>,<locPort>,<remIP>,<remPort>

where:

- <socketId> - socket connection identifier, as before
- <state> - actual state of the socket:
 - 0 - Socket Closed.
 - 1 - Socket with an active data transfer connection.
 - 2 - Socket suspended.
 - 3 - Socket suspended with pending data.
 - 4 - Socket listening.
 - 5 - Socket with an incoming connection. Waiting for the user accept or shutdown command.
 - 6 - Socket resolving DNS.
 - 7 - Socket connecting.
- <locIP> - IP address associated by the local network interface to the socket.
- <locPort> - two meanings:
 - the listening port if we put the socket in listen mode. (not available)
 - the local port for the connection if we use the socket to connect to a remote machine.
- <remIP> - it is the remote machine IP address.
- <remPort> - it is the the remote machine port

Note: issuing #WSS<CR> causes getting information about status of all the sockets;

The response format is:

#WSS:

<socketId1>,<state1>,<locIP1>,<locPort1>,<remIP1>,<remPort1><CR><LF>

...
5.4.12. #WSI

#WSI – Socket Info in Hot Spot mode

Execution command is used to get information about socket data traffic.

Parameters:

<socketId> - Socket connection identifier. 1-5 available

The response format is:

#WSI:
<socketId>,<sent>,<received>,<buff_in>,<ack_waiting>

where:

<socketId> - socket connection identifier, as before
<sent> - total amount (in bytes) of sent data since the last time the socket connection identified by <socketId> has been opened
<received> - total amount (in bytes) of received data since the last time the socket connection identified by <socketId> has been opened
<buff_in> - total amount (in bytes) of data just arrived through the socket connection identified by <socketId> and currently buffered, not yet read
<ack_waiting> - total amount (in bytes) of sent and not yet acknowledged data since the last time the socket connection identified by <socketId> has been opened

Note: not yet acknowledged data are available only for TCP connections; the value <ack_waiting> is always 0 for UDP connections.

Note: issuing #WSI<CR> causes getting information about data traffic of all the sockets; the response format is:

#WSI:
<socketId1>,<sent1>,<received1>,<buff_in1>,<ack_waiting1>
<CR><LF>
...

Note: if not otherwise specified, parameters have the same meaning and range of AT#SI

#WSI=?

Test command reports supported values for parameter <socketId>
WPING – Send PING request in Hot Spot mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WPING=<IPaddr> [,<retryNum> [,<len> [,<timeout> [,<ttl>]]]]</td>
<td>This command is used to send Ping Echo request messages and to receive the corresponding Echo Reply. Parameters:</td>
</tr>
<tr>
<td>< IPaddr></td>
<td>address of the remote host, string type. This parameter can be either:</td>
</tr>
<tr>
<td><retryNum></td>
<td>the number of Ping Echo Request to send 1-64 (default 4)</td>
</tr>
<tr>
<td><len></td>
<td>the length of Ping Echo Request message 32-1460 (default 32)</td>
</tr>
<tr>
<td><timeout></td>
<td>the timeout, in 100 ms units, for each Echo Reply 1-600 (default 50)</td>
</tr>
<tr>
<td><ttl></td>
<td>time to live of Echo messages 1-255 (default 128)</td>
</tr>
</tbody>
</table>

Once the single Echo Reply message is receive a string like that is displayed:

```
#WPING: <replyId>,<Ip Address>,<replyTime>,<ttl>
```

Where:

- <replyId> - Echo Reply number
- <Ip Address> - IP address of the remote host
- <replyTime> - time, in 100 ms units, required to receive the response
- <ttl> - time to live of the Echo Reply message

Note: when the Echo Request timeout expires (no reply received on time) the response will contain <replyTime> set to 600 and <ttl> set to 255

Note: If called when in Station mode, an error will be returned.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WPING=?</td>
<td>Test command reports supported values for the parameters.</td>
</tr>
</tbody>
</table>
5.4.14. **#WSSENDUDP**

<table>
<thead>
<tr>
<th>#WSSENDUDP</th>
<th>– Socket send in command mode in Hot Spot mode</th>
</tr>
</thead>
</table>
| **#WSSENDUDP=<socketId>,<rAddress>,<rPort>** | Set command permits, while the module is in command mode, to send data over UDP to a specific remote host. UDP connection must be previously completed with a first remote host through #WSLUDP/ #WSA.

Then, if data is received from this or another host, this command allows to send data to any of them.

Like command #WSSEND, the device responds with ‘>’ and waits for the data to send. The user input management is the same as #WSSEND.

Parameters:
- `<socketId>`: Socket connection identifier. 1-5 available
- `<rAddress>`: Address of the remote host: IPV4 or host name
- `<rPort>`: Remote host port

If data are successfully sent, then the response is OK.
If data sending fails for some reason, an error code is reported.

Note: the maximum number of bytes to send is 1500 bytes; trying to send more data will cause the surplus to be discarded and lost.

Note: after WSRING that indicates incoming UDP data and issuing #WSRECV to receive data itself, through #WSS is possible to check last remote host (IP/Port).

Note: if not otherwise specified, parameters have the same meaning and range of AT#SSENDUDP

#WSSENDUDP=? | Test command reports supported values for the parameters |

Example
Starts listening on `<LocPort>` on WiFi interface
AT#WSLUDP=1,1,<LocPort>,2
OK
WSRING: 1 // UDP data from a remote host available
AT#WSA=1,1
OK
WSRING: 1
AT#WSI=1
#WSI: 1,0,0,23,0 // 23 bytes to read
OK
AT#WSRECV=1,23
#WSRECV:1,23
message from first host
OK
AT#WSS=1
#WSS: 1,2,<LocIP>,<LocPort>,<RemIP1>,<RemPort1>
OK

AT#WSSENDUDP=1,<RemIP1>,<RemPort1>
>response to first host
OK

WSRING: 1 // UDP data from a remote host available

AT#WSI=1
#WSI: 1,22,23,24,0 // 24 bytes to read
OK

AT#WSRECV=1,24
#WSRECV:1,24
message from second host
OK

AT#WSS=1
#WSS: 1,2,<LocIP>,<LocPort>,<RemIP2>,<RemPort2>
OK

Remote host has changed, to send a response:

AT#WSSENDUDP=1,<RemIP2>,<RemPort2>
>response to second host
OK
5.5. **Raw (transceiver) mode commands**

5.5.1. #WRADIOPHYCFG

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| #WRADIOPHYCFG=<preamble Seq>[,<rate/mod>[,<power_lvl>[,<overrideCCA>[,<CCAThreshold>]]]] | Set command sets transceiver mode physical configuration for TX mode. | **Parameters:**

- `<preambleSeq>` - TX preamble sequence. Range: [0-3]
 Default: 0 (Long preamble)
 - 0: Long preamble
 - 1: Short preamble
 - 2: OFDM Mode
 - 3: Greenfield Mode

- `<rate/mod>` - TX Testing rate (with the corresponding MODULATION). Range: [1, 21]. Default: 1 (1Mbps DSSS).
 - 1: 1 Mbps (DSSS)
 - 2: 2 Mbps (DSSS)
 - 3: 5.5 Mbps (CCK)
 - 4: 11 Mbps (CCK)
 - 5: NOT SUPPORTED
 - 6: 6 Mbps (OFDM)
 - 7: 9 Mbps (OFDM)
 - 8: 12 Mbps (OFDM)
 - 9: 18 Mbps (OFDM)
 - 10: 24 Mbps (OFDM)
 - 11: 36 Mbps (OFDM)
 - 12: 48 Mbps (OFDM)
 - 13: 54 Mbps (OFDM)
 - 14: MCS 0
 - 15: MCS 1
 - 16: MCS 2
 - 17: MCS 3
 - 18: MCS 4
 - 19: MCS 5
 - 20: MCS 6
 - 21: MCS 7

- `<power_lvl>` - TX POWER attenuation for Continuous and Packetized testing, 0 being the maximum power and 15 being the minimum power. Range: [0, 15]. Default: 0

- `<overrideCCA>` - TX CCA override enable. Range: [0-1]
 Default: 1 (enabled)

- `<CCAThreshold>` - In case `<overrideCCA>` is not enabled, Clear Channel Assessment threshold to determine the signal level at which the channel is considered as occupied. Available values:
 - 1. Min: (-88dBm)
 - 2. Low: (-78dBm)
 - 3. Default: (-68dBm)
 - 4. Med: (-58dBm)
 - 5. High: (-48dBm)
 - 6. Max: (-38dBm)
 Default: 3 |

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT#WRADIOPHYCFG?</td>
<td>Read command returns the current transceiver mode physical parameters:</td>
</tr>
</tbody>
</table>
#WRADIOPHYCFG:
<preambleSeq>,<rate/mod>,<power_lvl>,<overrideCCA>,<CCAThreshold>

#WRADIOPHYCFG=?
Test command reports supported values for the parameters.
#WRADIOPHYCFG:
(0-4),(1-4,6-20),(0-15),(0-1),(1-6)

5.5.2. #WRADIOTXCFG

#WRADIOTXCFG – WiFi transceiver mode TX parameters configuration

(CONTINUOUS MODULATED)
#WRADIOTXCFG=<tx_mode>[,<channel>,<dest_mac_addr>,<packet_size>,<data_pattern>[,<duration>]]

(PACKETIZED)
#WRADIOTXCFG=<tx_mode>[,<channel>,<dest_mac_addr>,<packet_size>,<data_pattern>[,<packets_amount>[,<delay_period>]]

(CW)
#WRADIOTXCFG=<tx_mode>[,<channel>,<tone_offset>[,<duration>]]

Set command sets transceiver mode TX parameters configuration Parameters sequence depends on <tx_mode> value.

Parameters:
<tx_mode> - Transmission Mode. Range: [1-3]
Default: 1 (Continuous modulated)
1 – Continuous Modulated
2 – Packetized
3 – CW

- If <tx_mode> is 1 (Continuous modulated):
 <channel> - TX Wlan channel. Range: [1, 13]. Default: 1.
 Case insensitive. Default: 01:23:45:67:89:AB
 <data_pattern> - TX data pattern.
 Default: 0 (All 0)
 0: All 0
 1: All 1
 2: Incremental
 3: Decremental
 <duration> - TX Testing duration in seconds. Use 0 for infinite transmission. Range: [0, 65535]. Default: 1

- If <tx_mode> is 2 (Packetized):
 <channel> - TX Wlan channel. Range: [1, 13]. Default: 1.
 Case insensitive. Default: 01:23:45:67:89:AB
 <data_pattern> - TX data pattern.
 Default: 0 (All 0)
 0: All 0
 1: All 1
 2: Incremental
 3: Decremental
 <packets_amount> - TX maximum number of packets.
 Range:[0, 65535], 0 for infinite amount. Default: 0
#WRADIOTXCFG

- **<delay_period>** - TX delay between packets in milliseconds. Range: [100, 1,000,000]. Default: 100
- If **<tx_mode>** is 3 (CW):
 - **<channel>** - TX Wlan channel. Range: [1, 13]. Default: 1.
 - **<tone_offset>** - TX tone offset. A value of N means tone at offset N*312.5kHz.
 Range: [-25, 25]. Default: 0
 - **<duration>** - TX Testing duration in seconds. Use 0 for infinite transmission. Range: [0, 65535]. Default: 1

AT#WRADIOTXCFG?
Read command returns the current transceiver mode physical parameters (parameters sequence depending on **<tx_mode>**):

- #WRADIOTXCFG:
 1, <channel>, <dest_mac_address>, <packet_size>, <data_pattern>, <duration>

- #WRADIOTXCFG:
 2, <channel>, <dest_mac_address>, <packet_size>, <data_pattern>, <packets_amount>, <delay_period>

- #WRADIOTXCFG:
 2, <channel>, <tone_offset>, <duration>

#WRADIOTXCFG=?
Test command reports supported values as a compound value

5.5.3. #WRADIORXCFG

- **#WRADIORXCFG – WiFi transceiver mode RX mode**

 #WRADIORXCFG=<channel>[, <duration>[<urc_mode>]]]

 Set command sets transceiver mode physical configuration for RX mode

 Parameters:
 - **<channel>** - RX Wlan channel. Range: [1, 13]. Default: 1.
 - **<duration>** - RX Testing duration in seconds. Use 0 for infinite reception. Range: [0, 65535]. Default: 1
 - **<urc_mode>** - RX results report mode. Range: [0-1]. Default: 0.
 - 0: None. No RX result will be printed.
 - 1: All. After RX operation completion, a histogram will be printed, showing RSSI and Rate/Modulation for received packets. Refer to AT#WRADIOHIST command for further details.

AT#WRADIORXCFG?
Read command returns the current transceiver mode physical parameters:

- #WRADIORXCFG:
 <channel>, <duration>, <urc_mode>

#WRADIORXCFG=?
Test command reports supported values for the parameters.

- #WRADIORXCFG:
 (1-13), (1-65535), (0-1)
5.5.4. #WRADITEST

<table>
<thead>
<tr>
<th>#WRADITEST — WiFi transceiver mode operation start</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WRADITEST=<mode> Set command starts transceiver mode in TX or RX</td>
</tr>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td>< mode > - Radio test mode. Range: [0-1]. Default 0.</td>
</tr>
<tr>
<td>0: Tx</td>
</tr>
<tr>
<td>1: Rx</td>
</tr>
<tr>
<td>Note: in RX mode, if <urc_mode> was enabled with AT#WRADIRXCFG a report will be printed with results of RX operation.</td>
</tr>
<tr>
<td>If the RX or TX duration was set to 0 (infinite) AT#WRADIOSTOP must be used to stop the operation.</td>
</tr>
<tr>
<td>#WRADITEST=? Test command reports supported values for the parameters.</td>
</tr>
<tr>
<td>#WRADITEST:</td>
</tr>
<tr>
<td>(0-1)</td>
</tr>
</tbody>
</table>

5.5.5. #WRADIOSTOP

<table>
<thead>
<tr>
<th>#WRADIOSTOP — WiFi transceiver mode stop running RX/TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WRADIOSTOP Execution will stop any running RX or TX operation (either with finite or infinite timeout).</td>
</tr>
<tr>
<td>If no operation is ongoing, ERROR will be returned.</td>
</tr>
</tbody>
</table>

5.5.6. #WRADIOHIST

<table>
<thead>
<tr>
<th>#WRADIOHIST — WiFi transceiver mode RX print histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WRADIOHIST=<read> Set command will force the collect of all data received so far and report it as showed in execution command</td>
</tr>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td>< read > - Force reading of live received packets. Only allowed value is 1. Can be used only if AT#WRADITEST=1 is running (e.g. RX timeout was set to infinite and AT#WRADIOSTOP was not issued yet).</td>
</tr>
<tr>
<td>If no RX operation is ongoing, ERROR will be returned.</td>
</tr>
<tr>
<td>#WRADIOHIST Execution will report two histograms, one for RSSI values and one for Rate/modulation for all valid received packets</td>
</tr>
<tr>
<td>RSSI values are divided in six groups:</td>
</tr>
<tr>
<td>Above -48 dBm</td>
</tr>
<tr>
<td>-48 dBm to -55 dBm</td>
</tr>
<tr>
<td>-56 dBm to -63 dBm</td>
</tr>
<tr>
<td>-64 dBm to -71 dBm</td>
</tr>
<tr>
<td>-72 dBm to -79 dBm</td>
</tr>
<tr>
<td>below -79 dBm</td>
</tr>
</tbody>
</table>
Rate values are divided in twenty groups
1: 1 Mbps (DSSS)
2: 2 Mbps (DSSS)
3: 5.5 Mbps (CCK)
4: 11 Mbps (CCK)
6: 6 Mbps (OFDM)
7: 9 Mbps (OFDM)
8: 12 Mbps (OFDM)
9: 18 Mbps (OFDM)
10: 24 Mbps (OFDM)
11: 36 Mbps (OFDM)
12: 48 Mbps (OFDM)
13: 54 Mbps (OFDM)
14: MCS 0
15: MCS 1
16: MCS 2
17: MCS 3
18: MCS 4
19: MCS 5
20: MCS 6
21: MCS 7

Both histograms will report the percentage and absolute packet number for every group.
Histograms will show data from the last collect (e.g. after #WRADIOTEST=1 completed)
If not RX operation was performed before, an ERROR will be returned.

#WRADIOHIST? Read command acts as execution command
5.6. ME Error Result Code - +CME ERROR: <err>

This is NOT a command, it is the error response to AT commands. (Refer to docs 6 and 7)
Syntax: +CME ERROR: <err>
Parameter: <err> - error code can be either numeric or verbose (see +CMEE).
The possible values of <err> (referring to standard error events) can be found in docs 6 and 7.
An additional set of values related to WiFi events has been defined. The new values are reported in the table below:

<table>
<thead>
<tr>
<th>Numeric Format</th>
<th>Verbose Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Errors</td>
<td></td>
</tr>
<tr>
<td>10001</td>
<td>wifi - already running</td>
</tr>
<tr>
<td>10002</td>
<td>wifi - not running</td>
</tr>
<tr>
<td>10003</td>
<td>wifi - cannot set</td>
</tr>
<tr>
<td>10004</td>
<td>wifi - AP init not complete.</td>
</tr>
<tr>
<td>10005</td>
<td>wifi - AP deinit not complete.</td>
</tr>
<tr>
<td>10006</td>
<td>wifi - wrong mode</td>
</tr>
<tr>
<td>10007</td>
<td>wifi - API abort</td>
</tr>
<tr>
<td>10008</td>
<td>wifi - cannot start hot spot mode</td>
</tr>
<tr>
<td>Access Point Mode Errors</td>
<td></td>
</tr>
<tr>
<td>10020</td>
<td>wifi - cannot get stations info</td>
</tr>
<tr>
<td>10021</td>
<td>wifi - no stations connected</td>
</tr>
<tr>
<td>Station Mode Errors</td>
<td></td>
</tr>
<tr>
<td>10030</td>
<td>wifi - station not connected</td>
</tr>
<tr>
<td>10031</td>
<td>wifi - station cannot connect</td>
</tr>
<tr>
<td>10032</td>
<td>wifi - cannot ping gateway</td>
</tr>
<tr>
<td>10033</td>
<td>wifi - cannot ping server</td>
</tr>
<tr>
<td>10034</td>
<td>wifi - cannot scan available networks</td>
</tr>
<tr>
<td>Station Socket Errors</td>
<td></td>
</tr>
<tr>
<td>10050</td>
<td>wifi - tx error</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>10051</td>
<td>wifi - rx error</td>
</tr>
<tr>
<td>10100</td>
<td>dhcp server errors</td>
</tr>
<tr>
<td>10101</td>
<td>wifi - DHCP MAC present</td>
</tr>
<tr>
<td>10102</td>
<td>wifi - DHCP IP present</td>
</tr>
<tr>
<td>10200</td>
<td>raw mode errors</td>
</tr>
<tr>
<td>10201</td>
<td>wifi - cannot start transceiver</td>
</tr>
<tr>
<td>10202</td>
<td>wifi - cannot stop transceiver</td>
</tr>
<tr>
<td>10203</td>
<td>wifi - cannot collect RX statistics</td>
</tr>
</tbody>
</table>
5.7. URC messages

Below a list of possible unsolicited notification messages and when they are generated. Errors are received depending on CME level (refer to \[ME Error Result Code - +CME ERROR: <err>\])

<table>
<thead>
<tr>
<th>Message</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>#WIFI - INIT COMPLETE<CRLF></td>
<td>Issued after startup, indicates the app is ready to receive commands</td>
</tr>
<tr>
<td>#WIFI: WAITING STATIONS. (Act X)<CRLF></td>
<td>Hot Spot mode is running and waiting for connections from WiFi stations. X indicates the Access technology of the cellular connection (with the same meaning of AT+COPS? command.</td>
</tr>
<tr>
<td>#WIFI: AP OFF<CRLF></td>
<td>Hot Spot mode has been successfully stopped.</td>
</tr>
<tr>
<td>#WIFI: A Station Connected<CRLF></td>
<td>A WiFi station connected to the Hot Spot</td>
</tr>
<tr>
<td>#WIFI: A Station Disconnected<CRLF></td>
<td>A WiFi station disconnected to the Hot Spot</td>
</tr>
<tr>
<td>#WIFI: STA Connected to external AP<CRLF></td>
<td>The WiFi in station mode connected to an external Access Point.</td>
</tr>
<tr>
<td>#WIFI: PING AP SUCCESS<CRLF></td>
<td>In station mode, ping of the WiFi gateway succeeded. (LAN network access)</td>
</tr>
<tr>
<td>#WIFI: STA has Internet connection<CRLF></td>
<td>In station mode, ping to a remote server succeeded. (Internet access)</td>
</tr>
<tr>
<td>#WIFI: STA OFF<CRLF></td>
<td>Station mode disabled (disconnected from external AP)</td>
</tr>
<tr>
<td>#WIFI: Transmission done.<CRLF></td>
<td>Transceiver TX operation ended</td>
</tr>
<tr>
<td>#WIFI: RX Complete.<CRLF></td>
<td>Transceiver RX operation ended</td>
</tr>
<tr>
<td>#WIFI: PDP CONTEXT DEACTIVE<CRLF></td>
<td>The Cellular connection dropped. The hot spot must be stopped and restarted.</td>
</tr>
<tr>
<td>#WSRING:</td>
<td>Data was received from a connected socket in command mode. The format of the URC will depend on [WSCFGEXT] configuration.</td>
</tr>
</tbody>
</table>
6. USE CASES EXAMPLES

6.1. HOT SPOT commands sequence

Remember that you need to have SIM connected in order to have the HOT SPOT working

- Set the AP Mode
 AT#WIFIMODE=0
 - Configure AP Physical parameters
 AT#WIFIAPPHYCFG=<SSID>,<security>,<password>,<region>,<channel>
 - Configure the AP network parameter. For security typical is 2
 (OPTIONAL) AT#WIFIAPNETCFG=<ip>,<DNS>,<ip_start>,<ip_last>,<ip_lease_time>
 - Configure the AP Cellular interface.
 AT#WIFIAPPDPCFG=["apn"],<username>,<password>
 - Start the AP and wait for station to be connected.
 AT#WIFISTART=1

After this command you will the message #WIFI: WAITING FOR STATIONS ..as the image below:
6.1.1. HotSpot Mode, Socket commands

The following examples refer to a scenario with LE910 modules using a single APN and a single available IP address. For 3G modules (or 4G modules with 2 or more APNs), standard commands can be used.

Warning – All the commands in this subsection require that AT#WIFISTART=1 has been issued.

6.1.1.1. TCP client socket to a remote host using cellular network

- Server address: “server.address”
- Server Port: 8080

- Online Mode
  ```
  AT#WSD=1,0,8080,"server.address",0,0,0,1
  CONNECT
  …send data…
  +++
  OK
  AT#WSH=1
  OK
  
  AT#WSD=1,0,8080,"server.address",0,0,1,1
  OK
  AT#WSSEND=1
  >
  …send data…
  <ctrl>Z
  OK
  
  WSRING: 1
  
  AT#WSRECV=1,10
  #WSRECV=1,8
  received
  ```
OK
AT#WSH=1
OK

6.1.1.2. UDP client socket to a remote host using cellular network

- Server address: “server.address"
- Server Port: 8080

- Online Mode
 AT#WSD=1,1,8080,"server.address",0,0,0,1
 CONNECT
 <…send data…>
 +++
 OK
 AT#WSH=1
 OK

- Command Mode
 AT#WSD=1,1,8080,"server.address",0,0,1,1
 OK
 AT#WSSEND=1
 >
 …send data…
 <ctrl>Z
 OK

 WSRING: 1

 AT#WSRECV=1,10
 #WSRECV=1,8
 received

 OK
 AT#WSH=1
 OK
6.1.1.3. TCP client socket to a connected WiFi station using WiFi network

- Server address: 10.80.1.15
- Server Port: 8080

- Online Mode
 \[\text{AT#WSD}=1,0,8080,10.80.1.15,0,0,0,2\]

 CONNECT

 …send data…

 +++

 OK

 \[\text{AT#WSH}=1\]

 OK

- Command Mode
 \[\text{AT#WSD}=1,0,8080,10.80.1.15,0,0,1,2\]

 OK

 \[\text{AT#WSSEND}=1\]

 >

 …send data…

 <\text{ctrl}>Z

 OK

 WSRING: 1

 \[\text{AT#WSRECV}=1,10\]

 \[\text{#WSRECV}=1,8\]

 \[\text{received}\]

 OK

 \[\text{AT#WSH}=1\]

 OK
6.1.1.4. TCP listening socket on any interface (cellular or WiFi)

- Local Port: 8080

```
AT#WSL=1,1,8080
OK
AT#WSS=1
#WSS: 1,4,0.0.0.0,8080
OK

<A remote host with IP address 78.5.99.3 and remote port 54993 tries to connect on cellular interface, whose IP address is 10.240.11.235>

WSRING: 1

AT#WSS=1
#WSS: 1,5,10.240.11.235,8080,78.5.99.3,54993
OK

- Accept in Online Mode
```

```
AT#WSA=1,0
CONNECT
…send data…
+++ 
OK
AT#WSH=1
OK

- Accept in Command Mode
```

```
AT#WSA=1,1
OK
AT#WSS=1
#WSS: 1,2,10.240.11.235,8080,78.5.99.3,54993
OK
```
AT#WSSEND=1
>
…send data…
<ctrl>Z
OK

WSRING: 1

AT#WSRECV=1,10
#WSRECV=1,8
received

OK
AT#WSH=1
OK

6.1.1.5. TCP listening socket on cellular interface
 • Local Port: 8080

AT#WSL=1,1,8080,1
OK
<same steps as above>

6.1.1.6. TCP listening socket on WiFi interface
 • Local Port: 8080

AT#WSL=1,1,8080,2
OK
<same steps as above>
6.1.1.7. UDP listening socket on any interface (cellular or WiFi)

- Local Port: 8080

```
AT#WSLUDP=1,1,8080
OK
AT#WSS=1
#WSS: 1,4,0.0.0.0,8080
OK
```

A remote host with IP address 78.5.99.3 and remote port 54993 tries to connect on cellular interface, whose IP address is 10.240.11.235

```
WSRING: 1
```

```
AT#WSS=1
#WSS: 1,5,10.240.11.235,8080,78.5.99.3,54993
OK
```

- Accept in Online Mode

```
AT#WSA=1,0
CONNECT
...send data...
+++ 
OK
```

```
AT#WSH=1
OK
```

- Accept in Command Mode

```
AT#WSA=1,1
OK
AT#WSS=1
#WSS: 1,2,10.240.11.235,8080,78.5.99.3,54993
OK
```

```
AT#WSSEND=1
>
...send data...
<ctrl>Z
OK
```
WSRING: 1

AT#WSRECV=1,10
#WSRECV=1,8
received
OK
AT#WSH=1
OK

6.1.1.8. UDP listening socket on cellular interface
 • Local Port: 8080

AT#WSLUDP=1,1,8080,1
OK
<same steps as above>

6.1.1.9. UDP listening socket on WiFi interface
 • Local Port: 8080

AT#WSLUDP=1,1,8080,2
OK
<same steps as above>
6.2. STATION AT commands sequence

- Set the Station Mode
 AT#WIFIMODE=1
- Scan available networks
 AT#WIFISCAN
 - Configure Station Physical parameters
 AT#WIFISTAPHYCFG=<external SSID>,2,<password>
 - Configure the station in DHCP mode
 AT#WIFISTANETCFG=0
 - Start the Station and connect to the Access Point
 AT#WIFISTART=1
 - Open a TCP socket in online mode with remote server “modules.telit.com” on port 10510 (echo) and send/receive data
 AT#WIFISTASD=1,1,10510,modules.telit.com
 (Send +++ to close the socket)
 - Additional feature: ping a remote server
 AT#WIFISTAPING=1,"www.telit.com",300,2000,2
7. GLOSSARY AND ACRONYMS

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTSC</td>
</tr>
<tr>
<td>USB</td>
</tr>
<tr>
<td>HS</td>
</tr>
<tr>
<td>DTE</td>
</tr>
<tr>
<td>UMTS</td>
</tr>
<tr>
<td>WCDMA</td>
</tr>
<tr>
<td>HSDPA</td>
</tr>
<tr>
<td>HSUPA</td>
</tr>
<tr>
<td>UART</td>
</tr>
<tr>
<td>HSIC</td>
</tr>
<tr>
<td>SIM</td>
</tr>
<tr>
<td>SPI</td>
</tr>
<tr>
<td>ADC</td>
</tr>
<tr>
<td>DAC</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>GPIO</td>
</tr>
<tr>
<td>CMOS</td>
</tr>
<tr>
<td>MOSI</td>
</tr>
<tr>
<td>MISO</td>
</tr>
<tr>
<td>CLK</td>
</tr>
<tr>
<td>MRDY</td>
</tr>
<tr>
<td>SRDY</td>
</tr>
<tr>
<td>CS</td>
</tr>
<tr>
<td>RTC</td>
</tr>
<tr>
<td>PCB</td>
</tr>
<tr>
<td>ESR</td>
</tr>
<tr>
<td>VSWR</td>
</tr>
<tr>
<td>VNA</td>
</tr>
<tr>
<td>Revision</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>
SUPPORT INQUIRIES

Link to www.telit.com and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A.
Via Stazione di Prosecco, 5/B
I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC
5300 Broken Sound Blvd, Suite 150
Boca Raton, FL 33487, USA

Telit Wireless Solutions Inc.
3131 RDU Center Drive, Suite 135
Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd.
8th Fl., Shin young Securities Bld.
6, Gukjegeumgyung-ro8-gil, Yeongdeungpo-gu
Seoul, 150-884, Korea

Telit Wireless Solutions Ltd.
10 Habarzel St.
Tel Aviv 69710, Israel

Telit Wireless Solutions Tecnologia e Serviços Ltda
Avenida Paulista, 1776, Room 10.C
01310-921 São Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided "as is". No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com

Copyright © 2016, Telit