NE310H2 & NL865H2
Quick Start Guide

80630NT11837A Rev. 1 – 2020-09-03
SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities”). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
APPLICABILITY TABLE

PRODUCTS

- NE310H2-W1
- NL865H2-W1
CONTENTS

NOTICE 2

COPYRIGHTS .. 2

COMPUTER SOFTWARE COPYRIGHTS .. 2

USAGE AND DISCLOSURE RESTRICTIONS ... 3

I. License Agreements ... 3
II. Copyrighted Materials .. 3
III. High Risk Materials ... 3
IV. Trademarks .. 3
V. Third Party Rights ... 3

APPLICABILITY TABLE .. 4

CONTENTS .. 5

1. INTRODUCTION .. 7

2. GENERAL DESCRIPTION ... 10

2.1. Module Main Features ... 10
2.2. Communication Port .. 10

3. APPLICATION MAIN FLOW ... 11

4. NETWORK REGISTRATION .. 12

4.1. PDN Connection Setup ... 12
4.1.1. Auto Dial ... 12
4.2. Fast Registration ... 13
4.3. Signal strength and quality ... 14
4.4. Module registration network status query .. 14
4.5. Operator Information .. 15
4.6. PPP dial .. 15

5. DNS SCRIPT ... 16

6. TCP/UDP SCRIPT ... 17

6.1.1. Example for UDP .. 17
6.1.2. Example for TCP .. 18

7. FTP/FTPS SCRIPT .. 19

8. NIDD SCRIPT ... 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>PSM AND EDRX</td>
<td>21</td>
</tr>
<tr>
<td>9.1</td>
<td>PSM overview</td>
<td>21</td>
</tr>
<tr>
<td>9.2</td>
<td>PSM script</td>
<td>22</td>
</tr>
<tr>
<td>9.3</td>
<td>eDRX overview</td>
<td>25</td>
</tr>
<tr>
<td>9.4</td>
<td>eDRX script</td>
<td>25</td>
</tr>
<tr>
<td>9.5</td>
<td>PSM/eDRX Graphs</td>
<td>27</td>
</tr>
<tr>
<td>10.</td>
<td>MQTT</td>
<td>28</td>
</tr>
<tr>
<td>11.</td>
<td>FTP FOTA</td>
<td>29</td>
</tr>
<tr>
<td>12.</td>
<td>LWM2M</td>
<td>31</td>
</tr>
<tr>
<td>13.</td>
<td>TLS</td>
<td>34</td>
</tr>
<tr>
<td>14.</td>
<td>HTTP</td>
<td>36</td>
</tr>
<tr>
<td>15.</td>
<td>GLOSSARY AND ACRONYMS</td>
<td>38</td>
</tr>
<tr>
<td>16.</td>
<td>DOCUMENT HISTORY</td>
<td>39</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1. Scope
Scope of this document is to give an overview and basic instructions of how to start using the NE310H2 and NL865H2 module.

1.2. Audience
This document is intended for customers who want to use and test the NE310H2 and NL865H2 products.

1.3. Contact Information, Support
For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com

Alternatively, use:
http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:
http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.
Telit appreciates feedback from the users of our information.
1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.
1.5. Related Documents

- NE310H2-W1 HW Design Guide, 1VV0301608
- NL865H2-W1 HW Design Guide, 1VV0301616
- NE310H2 Interfaces User Guide, 1VV0301617
- NL865H2 Interfaces User Guide, 1VV0301629
- NE310H2 and NL865H2 AT Commands User Guide, 1VV0301611
- xL865 Global Form Factor Application Note, 80000NT11207A
- xE310 Global Form Factor Application Note, 80617NT11846A
2. GENERAL DESCRIPTION

2.1. Module Main Features

The NE310H2-W1 and NL865H2-W1 are the NBIoT evolution of the Telit Series of LTE modules based on the xE310 and xL865 form factor.

Specified in the approved Release 14 of the 3GPP standard, Cat NB2 devices are specifically tailored for IoT applications, offering optimized power consumption and enhanced coverage.

- NBIoT Category NB2 3GPP release 14 compliant
- Half Duplex FDD (see HW Design guide for details on supported bands)
- Single Rx, single antenna
- 3GPP Rel. 12 Power Saving Mode (PSM)
- 3GPP Rel. 13 Extended Discontinuous Reception (eDRX)
- Control via AT commands according to 3GPP TS27.005, 27.007 and customized AT commands
- SMS
- IPv4/IPv6 stack with TCP and UDP protocol
- Over-the-Air firmware update
- UDP, TCP, TLS, HTTP, HTTPS, FTP, COAP, MQTT, NIDD, LWM2M

TIP: the IP address/port set in this document is just for test, when in product application, please instead with the proper value.

2.2. Communication Port

- NE310H2-W1 supports:
 - 3 UARTs (Main and secondary with flow control and Auxiliary with RX TX only)
 - USB for debug only.
- NL865H2-W1 supports:
 - 2 UARTs (Main with flow control and Auxiliary with RX TX only)
 - USB for debug only.

<table>
<thead>
<tr>
<th>Product</th>
<th>UART Interface</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE310H2-W1</td>
<td>UART0</td>
<td>Software Download</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT Communication</td>
</tr>
<tr>
<td></td>
<td>UART1</td>
<td>AT Communication</td>
</tr>
<tr>
<td></td>
<td>AUX UART</td>
<td>Print Log</td>
</tr>
<tr>
<td>NL865H2-W1</td>
<td>UART0</td>
<td>Software Download</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT Communication</td>
</tr>
<tr>
<td></td>
<td>AUX UART</td>
<td>AT Communication</td>
</tr>
</tbody>
</table>
3. APPLICATION MAIN FLOW

Boot/WakeUp

AT#IOTBNDFULLPWR=1

Configure

Register?

Data service success?

Enter PSM

RESET

TIP:
Configure step includes APN config / Band lock / Frequency lock / PSM config and so on.

NOTE:
As per default setting and as shown in the above diagram, the module after the Power ON will enter in Power Saving state if no activities are requested. In order to change this setting is possible to use the AT#TSLK=1 command after the startup.
4. NETWORK REGISTRATION

4.1. PDN Connection Setup

AT*MCGDEFCONT command, set the connection settings for PDN connection.

In NB-IOT, when the module attach to the NB-IOT network, after it power on, it performs a PDN connection setup. Thus, the PDN connection settings must be set and stored in the NVRAM prior to the attach procedure so it will be used by the module during the attach procedure.

The set parameters of this command will take effect after restart the module.

AT*MCGDEFCONT=<PDP_type>[,<APN>[,<username>[,<password>]]]

The standard +CGDCONT command, should be used to define PDP context.

4.1.1. Auto Dial

Once the module power on, it will establish PDN connection automatically. And will report +IP:xxx.xxx.xxx.xxx when PS connection established. As shown below:

*MATREADY: 1

+CFUN: 1

+CPIN: READY

+IP: 100.82.105.9
4.2. Fast Registration

In order to shorten the register process with the network the below commands may be used to narrow down the number of bands and frequencies to scan.

AT*MFRCLLCK - Lock UE to specific frequency and optionally Cell ID
This command is used to lock UE to specific frequency and optionally Cell ID.
It will take effect once setting, and will be invalid after restart the module
AT*MFRCLLCK=1,10,3,301 // Lock to EARFCN 10, offset 0, PCI 301
OK
AT*MFRCLLCK=0 //Remove lock
OK

AT*MBSC - Lock BAND
This command is used to lock a specific band, and it will take effect after restart the module
AT*MBSC=3,3,5,8 //lock three bands, that is band3,5,8
*MBSC: 0
OK

AT*MBANDSL - Set Modem NB-IOT Search Prefer Band List
This command is to define the search prefer list
AT*MBANDSL=1,1,2,3,5 // Enable and se the prefer list
OK
4.3. Signal strength and quality

If the mobile device is already registered on the network. The following AT commands can be used to query the received signal strength and quality, thus giving an indication of the reliability of the wireless link.

AT+CESQ
Assuming that the module is not connected to the antenna or the network cannot be covered at all, there are:

AT+CESQ
+ CESQ: 99,99,255,255,255,255 // In this case, the module cannot be connected to the network

OK

Now, the antenna is connected to the module and the network coverage reaches the current position. Execute the above AT command again:

AT+CESQ
+ CESQ: 17,99,255,255,26,87 // 17 is the received signal strength indicator

OK

4.4. Module registration network status query

Execute the following AT command to verify whether the module has been registered on the EPS network using E-UTRAN method:

AT+CEREG?

AT+CEREG? // Verify that the module is registered
+ CEREG: 0,1 // registered

OK

Now, suppose there is no signal (the module is not connected to the antenna) and execute this command again:

AT+CEREG?
+ CEREG: 0,3 // In this case, the module cannot be connected to the network

OK

AT+CEREG=2 // Enable EPS network registration and position information to report actively, the results are as follows:
+ CEREG: <stat>, [<tac>], [<cl>], [<AcT>]]
4.5. Operator Information

Use the following AT command to return to the current mode, currently selected operator and current access technology:

AT+COPS?
E.g:
AT+COPS?
+ COPS: 0,0, "46011", 9

OK

Now, if there is no signal (the module is not connected to the antenna) and it is assumed that the detailed extended error return result has been enabled. Execute the above command again:

AT+COPS?
+ COPS: 0 // In this case, the module did not select an operator

OK

4.6. PPP dial

Configure Ubuntu Dialup Connection:

1) Send command AT#TSLK=1 before PPP dail.
2) Issue command “sudo gedit /etc/ppp/options”
3) Change crtscts to nocrtscts, comment modem, lcp-echo-interval, lcp-echo-failure
 #lcp-echo-interval
 #lcp-echo-failure
5. DNS SCRIPT

If the base station does not allocate DNS, then you need to configure the DNS server through the AT command EDNSSET. If the module is not configured with a DNS server, all services related to domain name resolution cannot be performed. EDNSSET can be configured with two IPV4 DNS servers and two IPV6 DNS servers. After EDNSSET configures DNS, it needs to re-register the network to take effect. The following demonstrates an example of setting up an ipv4 DNS server, then re-registering the network, and using the EDNS command to resolve the domain name.

Note:
You can use command AT+CGCONTRDP=1 to query whether the network allocates DNS.

AT+EDNSSET=0,0,"114.114.114.114"
OK
AT+CFUN=0
OK
AT+CFUN=1
OK
+CPIN: READY
+IP: 100.113.57.57
AT+EDNS="www.google.com"
OK
+DNS:31.13.83.1
6. TCP/UDP SCRIPT

An example of UDP communication over NB-IoT is reported below; in this scenario, the ESOC command is used to create a socket, you can use parameters to control whether it is UDP or TCP, ESOCON is used to establish a connection (UDP does not need to connect, here is only used to mark the address information of the communication peer, mainly for the consistency of AT commands), ESOSEND sends data, the data format is a hexadecimal string. +ESOMNI is used to report the received data (Hexadecimal string format). If you want to send data in the original format, you need to use ESODATAMODE to enter the data mode, you can use "+++" to exit the data mode to the command line mode, you must close the data channel after using ESODATAMODE. ESOCL closes the socket.

Note:
The interval between the three +++ should be less than 1s, and the interval between the first + and other inputs or the last + and other inputs should be greater than 1s.

6.1.1. Example for UDP

AT+ESOC=1,2,1 // Create UDP socket
+ESOC=0
OK

AT+ESOCON=0,12345,\"192.168.1.1\" // Open a session to a server
OK

AT+ESOSEND=0,8,4142434445464748,1 // Send 8 bytes to the server
OK

+ESONMI=0,8,4141424243434545 // Get 8 bytes from the server

AT+ESOCL=0 // Terminate the session with the server
OK
6.1.2. Example for TCP

AT+CGPADDR=0 // Read IP address

AT+ESOC=1,1,1 // Create TCP socket

+ESOC=0

OK

AT+ESOCON=0,12345,"192.168.1.1" // Open a session to a server

OK

AT+ESOSEND=0,8,4142434445464748,1 // Send 8 bytes to the server

OK

+ESONMI=0,8,4141424243434545 // Get 8 bytes from the server

AT+ESOCL=0 // Terminate the session with the server

OK
7. FTP/FTPS SCRIPT

An example of FTP/FTPS communication over NB-IoT is reported below; in this scenario, FTPOPEN is used to connect to the server. NB-IOT may be slow to connect to the FTPS server and it may take a few seconds. FTPPUTCON is used to establish a data channel connection with the server to provide services for uploading files. The FTPPUTDATA parameter indicates whether it is the last packet to upload data.

AT+FTPOPEN="192.168.1.1",21,"test","test",1,0,61000
OK

+FTPOPEN: OPEN SUCCESS

AT+FTPSIZE=/,testwu1.txt
+FTPSIZE: 34
OK

AT+FTPPUTCON=/,testwu1.txt
OK

+FTPPUTCON: SUCCESS

AT+FTPPUTDATA=0
CONNECT
NO CARRIER

AT+FTPPUTDATA=1
CONNECT
NO CARRIER

+FTPPUTDATA: END SUCCESS

AT+FTPGET=/,testwu1.txt,0,512
OK

+FTPGET:512,Hello!testTEST123567890!@#$%^&*()Hello!testTEST1235678
8. NIDD SCRIPT

AT+NIDD=0,PDN,user,password // Create NIDD account
+NIDD=0,Account_ID
OK

AT+NIDD=1,Account_ID // Create NIDD Sockett
+NIDD=1,NIDD_ID
OK

AT+NIDD=2,NIDD_ID // Set NIDD socket
OK

AT+NIDD=3,NIDD_ID,"3132333435" // Send data to the server
OK
+NIDD=4,NIDD_ID,"3637383941" // Recieve data from the server
9. PSM AND EDRX

9.1. PSM overview

Power Saving mode is a feature designed, in 3GPP Rel 12, for the IoT devices, in order to save battery consumption and therefore potentially achieve 10 years of battery life.

In the period of the time before the PSM, devices were turned off in order to conserve the battery power. Consequently, every power on of the device, an attach procedure to the network was performed. The accumulative energy consumption during a lifetime of a device can be significant and this can be avoided by using the PSM.

The PSM cycle actually stops the paging in front of the network and defines the interval between periodic Tracking Area Update (TAU) message. During the PSM time the device can't receive any MT message (Data/SMS) from the network side. This will decrease the battery consumption due to the decreasing of the device <-> network messaging.

During the PSM time, the IoT device will enter a low power mode, and will save battery consumption by not sending network messages.

Two types of Timers can be requested by the device to the network:

1. T3324 Active Time
 This timer defines the time the IoT device stays in active/idle mode, following a TAU procedure OR data transmission. During this time, the device still performs paging with the network. Once the timer is expired the device will switch to PSM mode.

2. T3412 TAU time
 This time defines the interval between two periodic Tracking Area Updates. Actually this timer can be set even if the PSM is disable.

NOTE:
User can request the two timers value, but the network decides the final value.
9.2. PSM script

Module supports 3GPP command AT+CPSMS and custom Telit command AT#CPSMS that simplifies and improve PSM management.

\[
\text{AT+CPSMS=[<mode>[,<Requested_Periodic_RAU>[,<Requested_GPRS_READY_timer>[,<Requested_Periodic_TAU>[,<Requested_Active_Time>]]]]}}
\]

The set command controls the setting of the UEs power saving mode (PSM) parameters. The command controls whether the UE wants to apply PSM or not, as well as the requested extended periodic RAU value and the requested GPRS READY timer value in GERAN, the requested extended periodic TAU value in E-UTRAN and the requested Active Time value. Find the relevant parameters below.

\(<\text{mode}>\)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable PSM</td>
</tr>
<tr>
<td>1</td>
<td>Enable PSM</td>
</tr>
<tr>
<td>2</td>
<td>Disable PSM and all the previous parameters set shall be removed to restore them to default values. (The parameter is not supported for the moment)</td>
</tr>
</tbody>
</table>

\(<\text{Requested_Periodic_RAU}>\): string type; 8-bit single byte. Request setting RAU cycle (T3412) under GERAN/UTRAN network.

\(<\text{Requested_GPRS_READY_timer}>\): string type; 8-bit single byte. Request setting GPRS READY cycle (T3324) under GERAN/UTRAN network.

\(<\text{Requested_Periodic_TAU}>\): string type; 8-bit single byte. Request setting RAU cycle (T3412) under LTE network.

\(<\text{Requested_Active_Time}>\): string format, 8 bytes. Request the Active Time value T3324 of the module. The default value is 20 seconds, that is, the module goes into dormant state 20s after reporting TAU to network by default.

\text{AT+CPSMS?}

Read command presents the current CPSMS configuration returned by the network, in the format:

\(+\text{CPSMS: <mode>[,<Requested_Periodic_RAU>[,<Requested_GPRS_READY_timer>[,<Requested_Periodic_TAU>[,<Requested_Active_Time>]]]]}}\)
Here below a simple script shows the AT+CPSMS functionalities.

AT+CPSMS? // PSM feature is OFF
+CPSMS: 0
OK

AT+CPSMS=1,,, "00011000","00001010" // Enable PSM feature: T3412=4Hs, T3324=20s
OK

A TAU (Tracking Area Update) is triggered, timer negotiation with the network starts; the procedure is fast, unsolicited are disabled we suggest to wait about 2s before proceeding with the next step

AT+CPSMS=1,,, "00011000","00001010" // It goes into dormant state 20s after reporting TAU to network every 4 hours in LTE network.
OK

Timers T3412 and T3324 start when module move from CONNECTED state to IDLE state (RRC Connection Release).

TIMERS START POINT (RRC Connection release)
20s
Active Time T3324 EXPIRE

The module enters automatically in PSM sleep (module turns off)

E.g. let's assume that at a certain point in time the user wants to use the module to send data; it is possible even if the module is in PSM; the user can wake module up with WAKE pin (see turn on procedure defined in HW user guide)
+CPIN: READY

The module is just turned on and it does not interact with the network, the T3412 timer is still running from TIMERS START POINT

AT+ESOC=1,2,1

+ESOC=0
OK

AT+ESOCON=0,7000,"219.144.130.27"
OK
AT+ESOSEND=0,10,303233343536373839

OK

AT+ESOCL=0
OK

New TIMERS START POINT: the module was in CONNECTED state, after RRC Connection Release from the network it moves to IDLE state, this reset the two timers

TIMERS START POINT (RRC Connection release)
20s
Active Time T3324 EXPIRE

The module enters automatically in PSM sleep (module turns off)
4Hs (T3412-T3324)
Tracking Area Update period T3412 EXPIRE

The module exits automatically from PSM sleep (module turns on); Tracking Area Update is triggered

+CPIN: READY
9.3. eDRX overview

eDRX is the extended of the DRX feature, designed in 3GPP Rel 13, for IoT devices in order to reduce power consumption and increase battery life.

eDRX allows to increase the time, in which the IoT device is not listening to the network. The device can configure the eDRX cycle (TeDRX) and every cycle can be configured with the Paging Transmission Window time (Tptw).

When TeDRX expires, it is restarted and Tptw is started. When Tptw expires, the device stops monitoring paging occasions.

NOTE:

This eDRX feature can be used with or without the PSM feature.

With eDRX the device can be reachable but still keep low power consumption.

The user can request the two timers value, but in the end, the network makes the decision.

9.4. eDRX script

Module supports 3GPP commands AT+CEDRXS, AT+CEDRXRDP and custom Telit command AT#CEDRXS that simplifies and improve eDRX management.

```
AT+CEDRXS=[<mode>,[,<AcT-type>],[,<Requested_eDRX_value>]]
```

Set command controls the setting of the UEs eDRX parameters. The command controls whether the UE wants to apply eDRX or not, as well as the requested eDRX value for each specified type of access technology. Find the relevant parameters below.

- `<mode>`: integer data to enable/disable eDRX. This parameter can be applied to all the specified types of access technology,
 - 0: Disable EDRX
 - 1: Enable eDRX
 - 2: Enable eDRX and enable active submission in the following formats:
    ```
    +CEDRXP:<AcT-type>,[,<Requested_eDRX_value>,[,<NW-provided_eDRX_value>,[,<Paging_time_window>]]]
    ```
 - 3: Disable eDRX and all the previous parameters set shall be removed to restore them to default values.

- `<AcT-type>`: integer data, access technology type
 - 0: Access technology without using eDRX. The parameter is only used to actively report result codes.
 - 5: E-UTRAN (NB-S1 mode)
<Requested_eDRX_value> : half a byte in a 4 bit format. The eDRX value refers to bit-4 to 1 of octet 3 of the Extended DRX parameters information element (see subclause 10.5.5.32 of 3GPP TS 24.008). For the coding and the value range, see Extended DRX parameters information element in 3GPP TS 24.008, Table 10.5.5.32/3GPP TS 24.008. Default value is "0000".

AT+CEDRXS?
Read command returns the current settings for each defined value of <AcTtype> in the format:
+CEDRXS: <AcT-type>,<Requested_eDRX_value>
Here below a simple script shows the AT+CEDRXS functionalities. The test is performed using a network simulator but the same can be applied on live network.

AT+CEDRXS=1,5,"1101"
OK
AT+CEDRXS?
+CEDRXS: 5,"1101"
OK
9.5. PSM/eDRX Graphs
10. MQTT

MQTT stands for Message Queue Telemetry Transport. It is a publish/subscribe, extremely simple and lightweight messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks. And port 1883 is reserved for MQTT, port 8883 is also reserved for using MQTT over SSL.

```
AT+EMQNEW="192.168.1.1","1883",50000,100        ------ create an MQTT instance
+EMQNEW: 0                                       ------ mqtt instance id
OK

AT+EMQCON=0,4,"myclientid",1000,1,0,"test","123456" ---- connect the server
OK

AT+EMQSUB=0,"topic",1                             ------ send SUBSCRIBE packet to server
OK

AT+EMQ PUB=0,"topic",1,0,0,4,"31323334"          ------ send PUBLISH packet to server
OK

+EMQ PUB:0,"topic",1,0,0,4,"31323334"            ------ report packet received from server

AT+EMQUNSUB=0,"topic"                             ------ send UNSUBSCRIBE packet to server
OK

AT+EMQDISCON=0                                   ------ send DISCONNECT packet to server
OK
```
11. FTP FOTA

An example of FTP FOTA communication over NB-IoT is reported below; in this scenario, FTPOPEN is used to connect to the server. FTPGETOTA is used to download the FTP FOTA package. FTPCLOSE is used to close the link of FTP FOTA. OTAUP is used to reset the module to upgrade the firmware.

AT+CGMR

M0J.00010-B001
OK

AT+FTPOPEN=ftp.test.com,21,username,password,1,0
OK

+FTPOPEN: OPEN SUCCESS
AT+FTPGETOTA=/tlttest,updateB.zip
OK

+FOTADL: 100%

FOTA DOWNLOADED

AT+FTPCLOSE
OK

AT+OTAUP
OK

FOTA UPDATING

F1: 0000 0000

V0: 0000 0000 [0001]

00: 0006 000C

01: 0000 0000

U0: 0000 0001 [0000]

T0: 0000 00B4
Leaving the BROM

*MATREADY: 1

+CFUN: 1
FOTA SUCCESS
+CPIN: READY

+IP: 100.82.105.9
AT+CGMR

M0J.00010-B002
OK
12. **LWM2M**

First of all, the user needs to connect to the LwM2M server. The module supports three ways to connect to the LwM2M server. The first way is to use bootstrap mode based on DTLS. The bootstrap mode requires the help of a LwM2M Bootstrap Server to achieve the ultimate goal to connect a LwM2M Server. In the bootstrap mode, the module requires credentials information for securely communicating with LwM2M Servers. The following is the usage of AT cmd.

```
AT+ELMREG=1,"54.209.23.144","5683","BS86861303014677",300
+ELMREG=0
OK
+ELMEVT:connect success
+ELMEVT:bootstraping
+ELMEVT:lifetime changed,value:21600
+ELMEVT:bootstrap success
+ELMEVT:connect success
+ELMEVT:registering
+ELMEVT:register success
```

The second way is to use registration mode based on DTLS. In this mode, the module requires credentials information for securely communicating with LwM2M Servers. The following is the usage of AT cmd.

```
AT+ELMREG=0,"192.168.1.1","5684","PSK8686130301111111",300,"8686130301111111","3132344446" 
+ELMREG=0
OK
+ELMEVT:connect success
+ELMEVT:registering
+ELMEVT:register success
```
The third way is to use registration mode without DTLS. This mode is insecure.

The following is the usage of AT cmd.

AT+ELMREG=0,"192.168.1.1","5683","T868613030014444",300
+ELMREG=0

OK

+ELMEVT:connect success

+ELMEVT:registering

+ELMEVT:register success

After connecting to LwM2M server successfully, the user can add or delete Object using “AT+ELMADDOBJ” or “AT+ELMDELOBJ”.

The following is the usage of AT cmd.

AT+ELMADDOBJ=0,3200,0
OK

+ELMEVT:update success

AT+ELMDELOBJ=0,3200
OK

+ELMEVT:update success

The user also can update lifetime using “AT+ELMUPDATE”.

The following is the usage of AT cmd.

AT+ELMUPDATE=0,200
OK

+ELMEVT:set success

After connecting to LwM2M server successfully, the LwM2M server will send device management request to module including Read, Write or Execute, and the module will report request information using “+ELMREAD”, “+ELMWRITE” or “+ELMEXECUTE”. after receiving the report information, the user need to use “AT+ELMREADRSP”, “AT+ELMWRITERSP” or “AT+ELMEXECUTERSP” to send reponse information to LwM2M server.

The following is the usage of AT cmd.

+ELMREAD:0,3200,0,1,5501
AT+ELMREADRSP=0,3200,0,1,5501,I,2,33
If LwM2M server is interested in some objects, the server will send observe request to module and the module will report observe request information using "+ELMOBSERVE". Then the user should send response information using "AT+ELMOBSERVERSP".

After the Observation is successfully, the user can report information about object to LwM2M server using "AT+ELMSEND".

The following is the usage of AT cmd.

```
+ELMOBSERVEREQ:0,3200,0,1,5501
AT+ELMOBSERVERSP=0,0,3200,0,1,5501,1,1,0
OK

AT+ELMSEND=0,1,3200,0,5501,1,2,33
OK
```

```
+ELMEVT:send success
+ELMEVT:send confirm success
```

The user can use "AT+ELMDEREG" to disconnect from LwM2M server. If the module has registered with LwM2M server successfully, the module will report "+ELMEVT:deregister success" and "+ELMEVT:clean complete". If the module has not finished registration with LwM2M server, the module only reports "+ELMEVT:clean complete".

The following is the usage of AT cmd.

```
AT+ELMDEREG=0
OK
```

```
+ELMEVT:deregister success
+ELMEVT:clean complete
```
13. **TLS**

TLS can be used on top of a transport-layer security protocol like TCP. There are three main components to TLS: Encryption, Authentication, and Integrity.

1. **Encryption**: hides the data being transferred from third parties.
2. **Authentication**: ensures that the parties exchanging information are who they claim to be.
3. **Integrity**: verifies that the data has not been forged or tampered with.

```
AT+TLSCFG="host_name",localhost
--- config hostname
OK

AT+TLSCFG="auth_mode",2
--- config auth_mode
OK

AT+TLSCFG="handshake_timeout",60000
--- config handshake_timeout
OK

AT+TLSCFG="view_mode",1
--- config view mode
OK

AT+TLSCFG="CA_CERT",1326
--- config CA certification

CONNECT
receive 350 data
receive 350 data
receive 350 data
receive 276 data

NO CARRIER
AT+TLSCFG="CLI_CERT",1330
--- config client certification

CONNECT
receive 350 data
receive 350 data
receive 350 data
receive 280 data

NO CARRIER
AT+TLSCFG="CLI_KEY",1700
--- config client key

CONNECT
```
receive 350 data
receive 350 data
receive 350 data
receive 350 data
receive 300 data

NO CARRIER
AT+TLSOPEN=192.168.1.1,8557 --- connect tls server
+TLSSTAT:1

OK

AT+TLSSEND=74656c69745f73656463645f74657374
+TLSSEND:19 --- send Hexadecimal string

OK

+TLSRECV: 28,telit_send_cmd_test --- receive data from server

AT+TLSSENDRAW=31,60 --- send raw data
CONNECT --- enter data mode
receive 31 data --- data mode receive 31 data

NO CARRIER --- exit data mode

+TLSSEND:31 --- send raw data
OK

+TLSRECV: 31,telit_sendraw_cmd_test --- receive data from server

AT+TLSSTAT --- get tls state
+TLSSTAT:1

OK

AT+TLSCLOSE --- close tls
+TLSSTAT:0

OK
14. HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. It is a generic, stateless protocol which can be used for many tasks beyond its use for hypertext, such as name servers and distributed object management systems, through extension of its request methods, error codes and headers.

```
AT+EHTTPCREATE=0,41,41,"http://192.168.1.1:61613/",,,0,,0,,0,"                     // create a HTTP client
+EHTTPCREAT:0  // 0: client id
OK

AT+EHTTPCON=0                                          // connect the server
OK

AT+EHTTPSEND=0,27,27,"0,0,9,"/Test.txt",0,,0,,0,,"       // get the file with path /Test.txt
OK

+EHTTPNMIH:0,404,157,Server: nginx/1.12.2
Date: Thu, 20 Dec 2018 09:14:27 GMT
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Connection: keep-alive

AT+EHTTPSEND=
0,113,113,"0,1,9","postjson",0,,16,"application/json",66,
7b2274657374223a3133333432347d
AT+EHTTPSEND=0,77,77,"0,2,4","put",0,,33,"application/x-www-form-urlencoded",18,
746573743d746573747d //Send HTTP-post request
OK

AT+EHTTPSEND=0,200,157,Server: nginx/1.12.2
Date: Thu, 20 Dec 2018 09:14:41 GMT
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Connection: keep-alive

AT+EHTTPSEND=
0,33,66,7b2274657374223a3132333435362c226d6573741765223a313333323432347d //Send HTTP-put request
OK
```

80630NT11837A Rev. 1 Page 36 of 40 2020-09-03
AT+EHTTPDISCON=0 //Disconnect HTTP
OK
AT+EHTTPDESTROY=0 //Destroy the http client instance
OK
15. GLOSSARY AND ACRONYMS

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTSC</td>
</tr>
<tr>
<td>USB</td>
</tr>
<tr>
<td>HS</td>
</tr>
<tr>
<td>DTE</td>
</tr>
<tr>
<td>UMTS</td>
</tr>
<tr>
<td>WCDMA</td>
</tr>
<tr>
<td>HSDPA</td>
</tr>
<tr>
<td>HSUPA</td>
</tr>
<tr>
<td>UART</td>
</tr>
<tr>
<td>HSIC</td>
</tr>
<tr>
<td>SIM</td>
</tr>
<tr>
<td>SPI</td>
</tr>
<tr>
<td>ADC</td>
</tr>
<tr>
<td>DAC</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>GPIO</td>
</tr>
<tr>
<td>CMOS</td>
</tr>
<tr>
<td>MOSI</td>
</tr>
<tr>
<td>MISO</td>
</tr>
<tr>
<td>CLK</td>
</tr>
<tr>
<td>MRDY</td>
</tr>
<tr>
<td>SRDY</td>
</tr>
<tr>
<td>CS</td>
</tr>
<tr>
<td>RTC</td>
</tr>
<tr>
<td>PCB</td>
</tr>
<tr>
<td>ESR</td>
</tr>
<tr>
<td>VSWR</td>
</tr>
<tr>
<td>VNA</td>
</tr>
</tbody>
</table>
16. DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2020-08-12</td>
<td>First issue</td>
</tr>
<tr>
<td>1</td>
<td>2020-09-03</td>
<td>Updated examples</td>
</tr>
</tbody>
</table>
Support Inquiries

Link to www.telit.com and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A.
Via Stazione di Prosecco, 5/B
I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC
5300 Broken Sound Blvd, Suite 150
Boca Raton, FL 33487, USA

Telit Wireless Solutions Inc.
3131 RDU Center Drive, Suite 135
Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd.
8th Fl., Shinyoung Securities Bld.
6, Gujegeumyung-ro8-gil, Yeongdeungpo-gu
Seoul, 150-884, Korea

Telit Wireless Solutions Ltd.
10 Habarzel St.
Tel Aviv 69710, Israel

Telit Wireless Solutions
Technologia e Servicos Ltda
Avenida Paulista, 1776, Room 10.C
01310-921 Sao Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided "as is". No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com

Copyright © 2016, Telit