SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.
USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit.

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities”). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
APPLICABILITY TABLE

PRODUCTS

NE310H2-W1
4.1. Operating Modes ... 24
4.2. Power Supply Requirements ... 25
4.3. Power Consumption .. 26
4.4. General Design Rules ... 28
4.4.1. Electrical Design Guidelines 28
4.4.1.1. +5V/+12V Source Power Supply Design Guidelines 28
4.4.1.2. Battery Source Power Supply Design Guidelines 29
4.4.2. Thermal Design Guidelines ... 30
4.4.3. Power Supply PCB layout Guidelines 31
4.5. RTC Bypass out ... 31
4.6. VAUX Power Output .. 32

5. DIGITAL SECTION ... 33
5.1. Logic Levels ... 33
5.2. Power On .. 34
5.3. Power Off .. 38
5.4. Unconditional Restart ... 40
5.4.1. PIN DESCRIPTION ... 40
5.4.2. Operating levels .. 41
5.5. WAKEUP from PSM ... 42
5.5.1. Pin Description ... 42
5.5.2. Application Example .. 44
5.6. SPI ... 45
5.7. Communication ports ... 46
5.7.1. Serial Ports .. 46
5.7.1.1. MODEM SERIAL PORT 0 (USIF0) 46
5.7.1.2. MODEM SERIAL PORT 1 (USIF1) 48
5.7.1.3. MODEM SERIAL PORT 3 (Auxiliary – DEBUG ONLY) 49
5.7.1.4. RS232 LEVEL TRANSLATION 50
5.7.1.5. 3.3V/5V UART level translation 52
5.8. General purpose I/O .. 53
5.8.1. Using a GPIO as INPUT .. 54
5.8.2. Using a GPIO as OUTPUT ... 54
5.8.3. Indication of network service availability 55
5.9. External SIM Holder ... 56
5.10. ADC .. 56

6. RF SECTION .. 57
6.1. Antenna requirements ... 57
6.1.1. Main Antenna ... 57
6.1.2. PCB Design guidelines .. 58
6.1.2.1. Transmission line design ... 59
6.1.2.2. Transmission Line Measurements 60
6.1.2.3. Antenna Installation Guidelines 61
7. MECHANICAL DESIGN ... 62
8. APPLICATION PCB DESIGN .. 63
 8.1. PCB pad design .. 64
 8.2. PCB pads ... 64
 8.3. Stencil ... 65
 8.4. Solder paste .. 65
 8.5. Solder Reflow .. 65
9. PACKAGING ... 66
 9.1. Tray ... 66
 9.2. Moisture sensitivity ... 68
10. CONFORMITY ASSESSMENT ISSUES 69
 10.1. Approvals .. 69
 10.2. Declaration of Conformity .. 69
11. SAFETY RECOMMENDATIONS .. 70
 11.1. READ CAREFULLY ... 70
12. REFERENCE TABLE OF RF BANDS CHARACTERISTICS 71
13. ACRONYMS ... 72
14. DOCUMENT HISTORY ... 74
1. INTRODUCTION

1.1. Scope
This document introduces the Telit NE310H2 modules and presents possible and recommended hardware solutions for developing a product based on this module. All the features and solutions detailed in this document are applicable to all NE310H2 variants, where NE310H2 refers to the variants listed in the applicability table.

Obviously, this document cannot embrace every hardware solution or every product that can be designed. Where the suggested hardware configurations need not be considered mandatory, the information given should be used as a guide and a starting point for properly developing your product with the Telit module.

1.2. Audience
This document is intended for Telit customers, especially system integrators, about to implement their applications using the Telit module.

1.3. Contact Information, Support
For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com
- TS-SRD@telit.com

Alternatively, use:
http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:
http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.
Telit appreciates feedback from the users of our information.
1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.
1.5. Related Documents

- AT Commands User Guide, 1VV0301611
- xE310 TLB Documentation, 1VV0301617
2. GENERAL PRODUCT DESCRIPTION

2.1. Overview
The NE310H2 is part of a new generation of modules in Telit’s NB-IoT module portfolio. With its compact LGA footprint, it is designed for those m2m applications requiring miniature footprint.

It is a multi band LTE NB-IoT communication product based on the market’s latest NB-IoT core which allows integrators to plan on availability for even the longest lifecycle applications, highly recommended for new designs specified for NB-IoT coverage worldwide.

It is highly recommended for new designs requiring NB-IoT coverage in a small and robust LGA package, which implies easy integration and low impact on final application size and costs. Ease of production and small footprint makes it the ideal solution for applications in security alarms, automated meter reading, and post terminals.

The NE310H2 operates with 1.8 V GPIOs, minimizing power consumption and making it even more ideally suited for battery powered and wearable device applications.

2.2. Product Variants and Frequency Bands

<table>
<thead>
<tr>
<th>Product</th>
<th>2G Band (MHz)</th>
<th>3G Band (MHz)</th>
<th>4G Band (MHz)</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE310H2-W1</td>
<td>-</td>
<td>-</td>
<td>B1, B2, B3, B4, B5, B8, B12, B13, B18, B19, B20, B25, B26, B28, B66, B71, B85</td>
<td>Worldwide</td>
</tr>
</tbody>
</table>

Refer to “RF Section” for details information about frequencies and bands.

NOTE:
The module is supporting the Multi-Frequency Band Indicator (MFBI)
2.3. Target market
The NE310H2 enables enterprises to deploy new small footprint designs across many application areas including:

- Utility metering
- Home and commercial security
- POS devices
- Logistics terminals

2.4. Main features

<table>
<thead>
<tr>
<th>Function</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem</td>
<td>• 3GPP Rel.14 LTE Cat.NB2</td>
</tr>
<tr>
<td></td>
<td>• SMS support (text and PDU)</td>
</tr>
<tr>
<td></td>
<td>• Real Time Clock</td>
</tr>
<tr>
<td>Interfaces</td>
<td>• 3 UARTs (Main and secondary with flow control and Auxiliary with RX TX only)</td>
</tr>
<tr>
<td></td>
<td>• USB V1.1 (debug only)</td>
</tr>
<tr>
<td></td>
<td>• SPI</td>
</tr>
<tr>
<td></td>
<td>• I2C</td>
</tr>
<tr>
<td></td>
<td>• 6 GPIOs</td>
</tr>
<tr>
<td></td>
<td>• Antenna pad</td>
</tr>
</tbody>
</table>

2.5. TX Output Power

<table>
<thead>
<tr>
<th>Band</th>
<th>Power class</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Bands</td>
<td>Class 3 (23dB)</td>
</tr>
</tbody>
</table>
2.6. RX Sensitivity

<table>
<thead>
<tr>
<th>Band</th>
<th>REFsens (dBm)Typical</th>
<th>3GPP REFsens (dBm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>-115.1</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 2</td>
<td>-115.1</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 3</td>
<td>-114.1</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 4</td>
<td>-114.9</td>
<td>-</td>
</tr>
<tr>
<td>Band 5</td>
<td>-115.3</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 8</td>
<td>-115.5</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 12</td>
<td>-115.2</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 13</td>
<td>-115.3</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 18</td>
<td>-115.1</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 19</td>
<td>-115.4</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 20 (no repetition)</td>
<td>-114.45</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 20 (with repetition)</td>
<td>-129</td>
<td>-</td>
</tr>
<tr>
<td>Band 25</td>
<td>-114.5</td>
<td>-</td>
</tr>
<tr>
<td>Band 26</td>
<td>-115.1</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 28</td>
<td>-115.4</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 66</td>
<td>-114.9</td>
<td>-108.2</td>
</tr>
<tr>
<td>Band 71</td>
<td>-115.1</td>
<td>-</td>
</tr>
<tr>
<td>Band 85</td>
<td>-115.2</td>
<td>-</td>
</tr>
</tbody>
</table>
2.7. Mechanical specifications

2.7.1. Dimensions

The overall dimensions of NE310H2 family are:
- Length: 15 mm
- Width: 18 mm
- Thickness: 2.3 mm

2.8. Temperature Range

<table>
<thead>
<tr>
<th>Condition</th>
<th>Range</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>-20°C to +55°C</td>
<td>The module is fully functional(*) within this 3GPP temperature range and meets 3GPP specifications.</td>
</tr>
<tr>
<td>Extended Temperature Range</td>
<td>-40°C to +85°C</td>
<td>The module is fully functional(*) within this temperature range. The RF Performance may deviate from 3GPP requirements in this extended range. For example: receiver sensitivity or maximum output power may deviate by a few dB due to limitations of physics like higher thermal noise floor at high temperature.</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°C to +85°C</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) Functional: if applicable, the module is able to make and receive data calls, send and receive SMS and data traffic.
3. PINS ALLOCATION

3.1. Pin-out

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>I/O</th>
<th>Function</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y16</td>
<td>TXD0</td>
<td>I</td>
<td>Serial data input (TXD) from DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>AA15</td>
<td>RXD0</td>
<td>O</td>
<td>Serial data output (RXD) to DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>Y18</td>
<td>RTS0</td>
<td>I</td>
<td>Input for Request to send signal (RTS) from DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>AA17</td>
<td>CTS0</td>
<td>O</td>
<td>Output for Clear to send signal (CTS) to DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>Y12</td>
<td>TXD1</td>
<td>I</td>
<td>Serial data input (TXD) from DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>AA11</td>
<td>RXD1</td>
<td>O</td>
<td>Serial data output (RXD) to DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>AA13</td>
<td>RTS1</td>
<td>I</td>
<td>Input for Request to send signal (RTS) from DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>Y14</td>
<td>CTS1</td>
<td>O</td>
<td>Output for Clear to send signal (CTS) to DTE</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>U19</td>
<td>USB_D+</td>
<td>I/O</td>
<td>USB differential Data (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V18</td>
<td>USB_D-</td>
<td>I/O</td>
<td>USB differential Data (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T18</td>
<td>USB_VBUS</td>
<td>-</td>
<td>Power sense for the internal USB transceiver</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compliant to VUSB from USB V1.1 specification (from 4.4 V to 5.5V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y10</td>
<td>TX_AUX</td>
<td>O</td>
<td>AUX UART (TX Data to DTE)</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>AA9</td>
<td>RX_AUX</td>
<td>I</td>
<td>AUX UART (RX Data from DTE)</td>
<td>CMOS 1.8</td>
<td></td>
</tr>
<tr>
<td>SIM card interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>SIM_CLK</td>
<td>O</td>
<td>External SIM signal – Clock</td>
<td>1.8 V</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>SIM_RST</td>
<td>O</td>
<td>External SIM signal – Reset</td>
<td>1.8 V</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>SIM_DAT</td>
<td>I/O</td>
<td>External SIM signal – Data I/O</td>
<td>1.8 V</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>SIM_VCC</td>
<td>-</td>
<td>External SIM signal – Power supply for the SIM</td>
<td>1.8 V</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>SIMIN</td>
<td>I</td>
<td>Presence SIM input</td>
<td>CMOS 1.8</td>
<td>See next chapters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIGITAL IO</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V11</td>
<td>IO1</td>
<td>I/O</td>
<td>Configurable GPIO01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 1: I2C_SDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 2: SIMIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMOS 1.8</td>
<td>GPIO is pull-down and Input in default, Alternate function can be configured by AT#GPIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When reused for I2C, these two pins are used in pairs</td>
</tr>
<tr>
<td>V13</td>
<td>IO2</td>
<td>I/O</td>
<td>Configurable GPIO02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 1: I2C_SCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 2: SIMIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMOS 1.8</td>
<td>GPIO is pull-down and Input in default, Alternate function can be configured by AT#GPIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When reused for I2C, these two pins are used in pairs</td>
</tr>
<tr>
<td>D7</td>
<td>IO3</td>
<td>I/O</td>
<td>Configurable GPIO03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 1: I2C_SDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 2: SIMIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMOS 1.8</td>
<td>GPIO is pull-down and Input in default, Alternate function can be configured by AT#GPIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When reused for I2C, these two pins are used in pairs</td>
</tr>
<tr>
<td>D9</td>
<td>IO4</td>
<td>I/O</td>
<td>Configurable GPIO04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 1: I2C_SCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 2: SIMIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMOS 1.8</td>
<td>GPIO is pull-down and Input in default, Alternate function can be configured by AT#GPIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When reused for I2C, these two pins are used in pairs</td>
</tr>
<tr>
<td>D11</td>
<td>IO5</td>
<td>I/O</td>
<td>Configurable GPIO05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 1: SIMIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMOS 1.8</td>
<td>GPIO is pull-down and Input in default, Alternate function can be configured by AT#GPIO</td>
</tr>
<tr>
<td>D13</td>
<td>IO6</td>
<td>I/O</td>
<td>Configurable GPIO06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate 1: SIMIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMOS 1.8</td>
<td>GPIO is pull-down and Input in default, Alternate function can be configured by AT#GPIO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B18</td>
<td>ADC</td>
<td>I</td>
<td>Analog To Digital converter Input</td>
</tr>
</tbody>
</table>
RF Section

| A5 | MAIN ANTENNA | I/O | Main Antenna (50 ohm) | RF | Main Antenna (50 ohm) |

Miscellaneous Functions

B2	S_LED	O	Status LED	CMOS 1.8V	
N16	ON_OFF*	I	Input Command for Power ON/OFF	CMOS 1.8V	Active Low
R19	RST*	I	Reset	CMOS 1.8V	Active Low
L16	WAKE*	O	Input Command to Wake from PSM	CMOS 1.8V	Falling edge trigger
R1	VAUX	O	Supply Output for external accessories / Power ON Monitor	Power	Max10mA

Audio Section

C1	DVI_WA0	I/O	Digital Audio Interface I2S (WA0)	CMOS 1.8V	Digital audio left-right clock output
D2	DVI_RX	I	Digital Audio Interface I2S (RX)	CMOS 1.8V	Send digital signal to codec’s DAC pin
E1	DVI_TX	O	Digital Audio Interface I2S (TX)	CMOS 1.8V	Receive digital signal from codec’s ADC
F2	DVI_CLK	I/O	Digital Audio Interface I2S (BCLK)	CMOS 1.8V	Digital audio bit clock output
L4	DVI_MCLK	I/O	Digital Audio Interface I2S (MCLK)	CMOS 1.8V	Master clock output

Bus SPI Master

Y6	SPI_CS	O/I	SPI - Circuit Select	CMOS 1.8V
AA7	SPI_CLK	O/I	SPI - Clock	CMOS 1.8V
AA5	SPI_MOSI	O/I	SPI - MOSI	CMOS 1.8V
Y8	SPI_MISO	I/O	SPI - MISO	CMOS 1.8V
Power Supply

<table>
<thead>
<tr>
<th>Port</th>
<th>Power Source</th>
<th>Function</th>
<th>Power Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>VBATT_PA</td>
<td>Main power supply (Radio PA)</td>
<td>Range: 3.0~3.6 V, recommended value is 3.3V</td>
</tr>
<tr>
<td>AA3</td>
<td>VBATT</td>
<td>Main power supply (Baseband)</td>
<td>Power Details: 3.0~3.6 V, recommended value is 3.3V</td>
</tr>
<tr>
<td>A3</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>A7</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>A13</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>A17</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>B4</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>B6</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>B12</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>B14</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>B16</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>C19</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>D18</td>
<td>GND</td>
<td>RF Ground</td>
<td>Power</td>
</tr>
<tr>
<td>F8</td>
<td>GND</td>
<td>Thermal Ground</td>
<td>Power</td>
</tr>
<tr>
<td>F12</td>
<td>GND</td>
<td>Thermal Ground</td>
<td>Power</td>
</tr>
<tr>
<td>F18</td>
<td>GND</td>
<td>Thermal Ground</td>
<td>Power</td>
</tr>
<tr>
<td>G19</td>
<td>GND</td>
<td>Thermal Ground</td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Type 1</td>
<td>Type 2</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>H6</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>H14</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>J19</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>K18</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>M18</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>N19</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>P6</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>P14</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>T8</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>T12</td>
<td>GND</td>
<td>-</td>
<td>Thermal Ground</td>
</tr>
<tr>
<td>U1</td>
<td>GND</td>
<td>-</td>
<td>Power Ground</td>
</tr>
<tr>
<td>V2</td>
<td>GND</td>
<td>-</td>
<td>Power Ground</td>
</tr>
<tr>
<td>W19</td>
<td>GND</td>
<td>-</td>
<td>Power Ground</td>
</tr>
<tr>
<td>Y2</td>
<td>GND</td>
<td>-</td>
<td>Power Ground</td>
</tr>
<tr>
<td>Y4</td>
<td>GND</td>
<td>-</td>
<td>Power Ground</td>
</tr>
</tbody>
</table>

Reserved

<table>
<thead>
<tr>
<th></th>
<th>Location</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>RESERVED</td>
<td>-</td>
<td>RESERVED</td>
</tr>
<tr>
<td>H2</td>
<td>RESERVED</td>
<td>-</td>
<td>RESERVED</td>
</tr>
<tr>
<td>J1</td>
<td>RESERVED</td>
<td>-</td>
<td>RESERVED</td>
</tr>
<tr>
<td>K2</td>
<td>RESERVED</td>
<td>-</td>
<td>RESERVED</td>
</tr>
<tr>
<td>J4</td>
<td>RESERVED</td>
<td>-</td>
<td>RESERVED</td>
</tr>
<tr>
<td>Pin</td>
<td>Description</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>L19</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>V7</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>V9</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>AA13</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>E19</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>R16</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>H18</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>G16</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>J16</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td></td>
</tr>
</tbody>
</table>

WARNING
Reserved pins must not be connected.
If not used, almost all pins should be left disconnected. The only exceptions are the following pins:

<table>
<thead>
<tr>
<th>Pad</th>
<th>Signal</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>VBATT_PA</td>
<td></td>
</tr>
<tr>
<td>AA3</td>
<td>VBATT</td>
<td></td>
</tr>
<tr>
<td>A3, A7, A9, A13, B4, B6, B10, B12, B14, B16, C19, D18, F8, F12, F18, G19, H6, H14, J19, K18, M18, N19, P6, P14, T8, T12, U1, V2, W19, Y2, Y4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>MAIN ANTENNA</td>
<td></td>
</tr>
<tr>
<td>Y16</td>
<td>C103/TXD0</td>
<td></td>
</tr>
<tr>
<td>AA15</td>
<td>C104/RXD0</td>
<td></td>
</tr>
<tr>
<td>Y18</td>
<td>C105/RTS0</td>
<td></td>
</tr>
<tr>
<td>AA17</td>
<td>C106/CTS0</td>
<td></td>
</tr>
<tr>
<td>N16</td>
<td>ON_OFF*</td>
<td></td>
</tr>
<tr>
<td>R19</td>
<td>RST*</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>VAUX</td>
<td></td>
</tr>
<tr>
<td>L16</td>
<td>WAKE*</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>SIM_CLK</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>SIM_RST</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>SIM_DAT</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>SIM_VCC</td>
<td></td>
</tr>
<tr>
<td>U19</td>
<td>USB_D+</td>
<td>On TP or a Connector</td>
</tr>
</tbody>
</table>
RTS pin should be connected to the GND (on the module side) if flow control is not used. The above pins are also necessary to debug the application when the module is assembled on it so we recommend connecting them also to dedicated test point.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V18</td>
<td>USB_D-</td>
<td>On TP or a Connector</td>
</tr>
<tr>
<td>T18</td>
<td>USB_VBUS</td>
<td>On TP or a Connector</td>
</tr>
</tbody>
</table>
3.2. LGA Pads Layout

TOP VIEW

- **Supply and Control**
- **SIM Card**
- **Analog Functionality**
- **Ground**
- **Digital Functionality**
- **Digital Communication**
- **RF Signals**
- **Reserved**
- **GND55**
4. POWER SUPPLY
The power supply circuitry and board layout are a very important part in the full product design and they strongly reflect on the product overall performances, hence read carefully the requirements and the guidelines that will follow for a proper design.

4.1. Operating Modes
This module has three operating modes, which can determine availability of functions for different levels of power-saving.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>In active mode, all functions of the module are available and all processors are active. Data transmission and reception can be performed. Transitions to idle or PSM mode can be initiated in active mode.</td>
</tr>
<tr>
<td>Idle</td>
<td>In idle mode, the module is in light sleep and network connection is maintained (module in DRX/eDRX mode); paging messages can be received; transitions to active mode or PSM can be initiated in idle mode.</td>
</tr>
<tr>
<td>PSM</td>
<td>In PSM, the module is in deeper sleep and only the 32kHz RTC is working. The network is disconnected, and paging messages cannot be received either. When MO (Mobile Originated) data are sent or the periodic TAU (Tracking Area Update) timer T3412 expires, or when WAKE* drop edge trigger, the module will be woken up.</td>
</tr>
</tbody>
</table>
4.2. Power Supply Requirements

The external power supply must be connected to VBATT & VBATT_PA signals and must fulfil the following requirements:

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Supply Voltage</td>
<td>3.3V</td>
</tr>
<tr>
<td>Operating Voltage Range</td>
<td>3.00 V÷ 3.60 V</td>
</tr>
<tr>
<td>Extended Voltage Range</td>
<td>2.10 V÷ 3.63 V</td>
</tr>
<tr>
<td>(\text{VBAT}_{\text{min}})</td>
<td>2.10V</td>
</tr>
<tr>
<td>Absolute Maximum Value</td>
<td>3.63V</td>
</tr>
</tbody>
</table>

NOTE:
The Operating Voltage Range MUST never be exceeded; care must be taken when designing the application's power supply section to avoid having an excessive voltage drop. If the voltage drop is exceeding the limits it could cause a Power Off of the module. Overshoot voltage (regarding MAX Extended Operating Voltage) and drop in voltage (regarding MIN Extended Operating Voltage) MUST never be exceeded.

NOTE:
The electrical design for the Power supply should be made ensuring it will be capable of a peak current output of at least 500mA.
4.3. Power Consumption

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
<th>Average</th>
<th>Max. value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown</td>
<td>Shutdown leakage current</td>
<td>3.2</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>AT+CFUN=0</td>
<td>Turn off radio and SIM power</td>
<td>3.8</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>PSM mode</td>
<td>Power Save Mode</td>
<td>4.2</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>eDRX; PTW</td>
<td>81.92s; 40.96s</td>
<td>293</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>DRX</td>
<td>1.28s</td>
<td>475</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>DRX</td>
<td>2.56s</td>
<td>303</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>IDLE</td>
<td>Idle mode</td>
<td>520</td>
<td></td>
<td>uA</td>
</tr>
</tbody>
</table>

Operating current in NB-IoT mode

<table>
<thead>
<tr>
<th>Band</th>
<th>Pout=23dBm</th>
<th>Average</th>
<th>Max. value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band1</td>
<td>Pout=23dBm</td>
<td>122</td>
<td>280</td>
<td>mA</td>
</tr>
<tr>
<td>Band2</td>
<td>Pout=23dBm</td>
<td>115</td>
<td>263</td>
<td>mA</td>
</tr>
<tr>
<td>Band3</td>
<td>Pout=23dBm</td>
<td>103</td>
<td>232</td>
<td>mA</td>
</tr>
<tr>
<td>Band4</td>
<td>Pout=23dBm</td>
<td>100</td>
<td>221</td>
<td>mA</td>
</tr>
<tr>
<td>Band5</td>
<td>Pout=23dBm</td>
<td>110</td>
<td>250</td>
<td>mA</td>
</tr>
<tr>
<td>Band8</td>
<td>Pout=23dBm</td>
<td>112</td>
<td>255</td>
<td>mA</td>
</tr>
<tr>
<td>Band12</td>
<td>Pout=23dBm</td>
<td>115</td>
<td>264</td>
<td>mA</td>
</tr>
<tr>
<td>Band13</td>
<td>Pout=23dBm</td>
<td>106</td>
<td>243</td>
<td>mA</td>
</tr>
<tr>
<td>Band17</td>
<td>Pout=23dBm</td>
<td>113</td>
<td>258</td>
<td>mA</td>
</tr>
<tr>
<td>Band18</td>
<td>Pout=23dBm</td>
<td>118</td>
<td>271</td>
<td>mA</td>
</tr>
<tr>
<td>Band19</td>
<td>Pout=23dBm</td>
<td>118</td>
<td>270</td>
<td>mA</td>
</tr>
<tr>
<td>Band20</td>
<td>Pout=23dBm</td>
<td>122</td>
<td>280</td>
<td>mA</td>
</tr>
<tr>
<td>Band25</td>
<td>Pout=23dBm</td>
<td>116</td>
<td>265</td>
<td>mA</td>
</tr>
<tr>
<td>Band</td>
<td>Pout=23dBm</td>
<td>Current (mA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band26</td>
<td>118</td>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band28</td>
<td>116</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band66</td>
<td>101</td>
<td>227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band71</td>
<td>119</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band85</td>
<td>116</td>
<td>255</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4. General Design Rules

The principal guidelines for the Power Supply Design embrace three different design steps:

- the electrical design
- the thermal design
- the PCB layout.

4.4.1. Electrical Design Guidelines

The electrical design of the power supply depends strongly from the power source where this power is drained. We will distinguish them into three categories:

- +5V input (typically PC internal regulator output)
- +12V input (typically automotive)
- Battery

4.4.1.1. +5V/+12V Source Power Supply Design Guidelines

- The desired output for the power supply is 3.3V, hence due to the difference between the input source and the desired output, a switching power supply will be preferable because of its better efficiency.
- When using a switching regulator, a 500kHz or more switching frequency regulator is preferable because of its smaller inductor size and its faster transient response. This allows the regulator to respond quickly to the current peaks absorption.
- In any case the frequency and Switching design selection is related to the application to be developed due to the fact the switching frequency could also generate EMC interferences.
- For car PB battery the input voltage can rise up to 15.8V and this should be kept in mind when choosing components: all components in the power supply must withstand this voltage.
- A Bypass low ESR capacitor of adequate capacity must be provided in order to cut the current absorption peaks, a 100μF tantalum capacitor is usually suited.
- Make sure the low ESR capacitor on the power supply output (usually a tantalum one) is rated at least 10V.
- For Car applications a spike protection diode should be inserted close to the power input, in order to clean the supply from spikes.
- A protection diode should be inserted close to the power input, in order to save the module from power polarity inversion. This can be the same diode as for spike protection.
The reference circuit is as follow:

4.4.1.2. Battery Source Power Supply Design Guidelines

The desired nominal output for the power supply is 3.3V and the maximum voltage allowed is 3.63V.

- A Bypass low ESR capacitor of adequate capacity must be provided in order to cut the current absorption peaks, a 100μF tantalum capacitor is usually suited.
- Make sure the low ESR capacitor (usually a tantalum one) is rated at least 10V.
- A protection diode should be inserted close to the power input, in order to save the NE310H2-W1 from power polarity inversion. Otherwise the battery connector should be done in a way to avoid polarity inversions when connecting the battery.

WARNING:

The three cells Ni/Cd or Ni/MH 3.6 V Nom. Battery types or 4V PB types **MUST NOT BE USED DIRECTLY** since their maximum voltage can rise over the absolute maximum voltage for the NE310H2-W1 and damage it.

NOTE:

DON’T USE any Ni-Cd, Ni-MH, and Pb battery types directly connected with NE310H2-W1. Their use can lead to overvoltage on the NE310H2-W1 and damage it. USE ONLY Li-MnO2 or LiSoCl2 batteries.
4.4.2. Thermal Design Guidelines

The thermal design for the power supply heat sink should be done considering the values described in the “Power Consumption” chapter.

Considering the very low current during idle, especially if Power Saving function is enabled, it is possible to consider from the thermal point of view that the device absorbs current significantly only during calls.

For the heat generated by the module, you can consider it to be during transmission 0.99W max during Data call.

This generated heat will be mostly conducted to the ground plane under the module; you must ensure that your application can dissipate it.

NOTE:
The average consumption during transmissions depends on the power level at which the device is requested to transmit by the network. The average current consumption hence varies significantly.
4.4.3. Power Supply PCB layout Guidelines

As seen on the electrical design guidelines the power supply shall have a low ESR capacitor on the output to cut the current peaks and a protection diode on the input to protect the supply from spikes and polarity inversion. The placement of these components is crucial for the correct working of the circuitry. A misplaced component can be useless or can even decrease the power supply performance.

- The Bypass low ESR capacitor must be placed close to the Telit NE310H2-W1 power input pads or in the case the power supply is a switching type it can be placed close to the inductor to cut the ripple provided the PCB trace from the capacitor to the NE310H2-W1 is wide enough to ensure a dropless connection even during the 500mA current peaks.

- The protection diode must be placed close to the input connector where the power source is drained.

- The PCB traces connecting the Switching output to the inductor and the switching diode must be kept as short as possible by placing the inductor and the diode very close to the power switching IC (only for switching power supply). This is done in order to reduce the radiated field (noise) at the switching frequency (100-500 kHz usually)

- The use of a good common ground plane is suggested.

- The placement of the power supply on the board should be done in such a way to guarantee that the high current return paths in the ground plane are not overlapped to any noise sensitive circuitry as the microphone amplifier/buffer or earphone amplifier.

- The power supply input cables should be kept separate from noise sensitive lines such as microphone/earphone cables.

- The insertion of EMI filter on VBATT pins is suggested in those designs where antenna is placed close to battery or supply lines.

- A ferrite bead like Murata BLM18EG101TN1 or Taiyo Yuden P/N FBMH1608HM101 can be used for this purpose.

4.5. RTC Bypass out

The NE310H2 module is provided by an internal RTC section but its reference supply is VBATT. So, in order to maintain active the RTC programming, VBATT should not be removed.
4.6. **VAUX Power Output**

A regulated power supply output is provided in order to supply small devices from the module. The signal is in common with the PWRMON (module powered ON indication) function. This output is always active when the module is powered ON. The operating range characteristics of the supply are:

<table>
<thead>
<tr>
<th>Item</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>1.62V</td>
<td>1.80V</td>
<td>1.98V</td>
</tr>
<tr>
<td>Output current</td>
<td></td>
<td></td>
<td>10mA</td>
</tr>
<tr>
<td>Output bypass capacitor</td>
<td></td>
<td>0.1uF</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
The Output Current MUST never be exceeded; care must be taken when designing the application section to avoid having an excessive current consumption. If the Current is exceeding the limits it could cause a Power Off of the module.

NOTE:
VAUX max output current is shared with the other GPIOs for a maximum load of 10mA.

Warning:
The current consumption from VAUX/PWRMON increases the modem temperature.
5. DIGITAL SECTION

5.1. Logic Levels

ABSOLUTE MAXIMUM RATINGS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level on any digital pin (CMOS 1.8) with respect to ground</td>
<td>-0.3V</td>
<td>2.1V</td>
</tr>
</tbody>
</table>

OPERATING RANGE – INTERFACE LEVELS (1.8V CMOS):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input high level</td>
<td>1.35V</td>
<td>1.98V</td>
</tr>
<tr>
<td>Input low level</td>
<td>-0.3V</td>
<td>0.63V</td>
</tr>
<tr>
<td>Output high level</td>
<td>1.35V</td>
<td>1.98V</td>
</tr>
<tr>
<td>Output low level</td>
<td>0</td>
<td>0.45</td>
</tr>
</tbody>
</table>

CURRENT CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MAX</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Current</td>
<td>5uA</td>
<td>Digital high input, pull-down disable</td>
</tr>
<tr>
<td></td>
<td>5uA</td>
<td>Digital low input, pull-up disable</td>
</tr>
</tbody>
</table>
5.2. Power On

To turn on the NE310H2-W1 the pad ON_OFF* must be tied low for at least 0.5 second and then released. This is the typical time sequence:

The ON_OFF circuit design is divided into two types: 1.8V and non-1.8V in relation to the application logic level range.

The 1.8V ON_OFF reference circuit design is shown below. The resistance value is for reference only. Please fine tune according to the specific application:
The non-1.8V ON_OFF reference circuit design is shown below:

NOTE:
To check if the device has powered on, the hardware line VAUX/PWRMON should be monitored.

Do not directly connect this pin to GND through the resistor; otherwise, the module cannot enter the PSM mode.
A flow chart showing the proper turn on procedure is displayed as follow:
A flow chart showing the AT commands managing procedure is displayed below:

NOTE:
In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2-W1 when the module is powered off or during an ON/OFF transition.
5.3. Power Off

The device could be turned off using the ON_OFF* pin. When the procedure is activated, the device issues a detach request to network informing that the device will not be reachable any more. To turn OFF the NE310H2-W1 the pad ON_OFF* must be tied low for at least 3 seconds (typical value 4s) and then released.

NOTE:

In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2-W1 when the module is powered off or during an ON/OFF transition.
The following flow chart shows the proper turn off procedure:

```
    Modem OFF Proc.
     START

   _PWRMON=ON?
    Y
    OFF Mode

    AT
    N
    ON OFF* = LOW
    Delay >= 3 Sec
    ON OFF* = HIGH

    AT#SHDN

    _PWRMON = ON?
    Y
    Looping for more
    N
    GOTO
    "HW Shutdown Unconditional"

    "Modem OFF Proc"
     END
```
5.4. Unconditional Restart

To unconditionally restart the NE310H2-W1, the pad RST* must be tied low for at least 400 milliseconds and then released.

The hardware unconditional Restart must not be used during normal operation of the device since it does not detach the device from the network. It shall be kept as an emergency exit procedure to be done in the rare case that the device gets stuck waiting for some network or SIM responses.

The unconditional hardware restart must always be implemented on the boards and the software must use it as an emergency exit procedure.

5.4.1. PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Signal</th>
<th>Function</th>
<th>I/O</th>
<th>Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST*</td>
<td>Unconditional Reset of the Module</td>
<td>I</td>
<td>R19</td>
</tr>
</tbody>
</table>

There are two way to reset the module you can choose:

1: Through AT command of “AT+TRST”

2: Reset the module through RST pin

When the software stops response, you can pulled down RST 400ms to reset the module's system.

The RST timing is shown in the following figure below:

T5: The RST process until the AT port can communicate will spend 1 second
5.4.2. Operating levels

The RST* line is connected to VBATT with a Pull Up so the electrical levels on this pin are aligned to the main supply level.

WARNING:
The hardware unconditional Reset must not be used during normal operation of the device since it does not detach the device from the network. It shall be kept as an emergency exit procedure.

The RST circuit design is divided into two types: 1.8V and non-1.8V. The 1.8V RST reference circuit design is shown below. The resistance value is for reference only. Please fine tune according to the actual situation:

![1.8V RST reference circuit design](image)

The non-1.8V RST reference circuit design is the following:

![Non-1.8V RST reference circuit design](image)
NOTE:
In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2-W1 when the module is powered off or during a reboot transition.

NOTE:
To properly power on again the module please refer to the related paragraph ("Power ON")
The unconditional hardware reboot must always be implemented on the boards and should be used only as an emergency exit procedure.

5.1. WAKEUP from PSM

5.1.1. Pin Description

The module is provided by an input line named WAKE* used to wakeup the module from the deep power saving state (PSM). The signal is active LOW.

The following figure is the signal waveform:

![Signal Waveform](image)
The WAKE from PSM process is described in the following flowchart:

```
START

VBATT>3V?

Y

PWRMON = ON?

N

WAKE* = Low

Delay = 4 ms

WAKE* = High

PWRMON = ON?

N

Y

Delay 1s

GOTO

“HW SHUTDOWN unconditional”

GOTO

“Start AT CMD.”

“Modem Wake Proc”

END
```
5.1.2. Application Example

The WAKE circuit design is divided into two types: 1.8V and non-1.8V.

The 1.8V WAKE* reference circuit design is shown below. The resistance value is for reference only. Please fine tune it according to the specific application design:

![1.8V WAKE* Reference Circuit Design](image)

The non-1.8V WAKE* reference circuit design is the following:

![Non-1.8V WAKE* Reference Circuit Design](image)

The resistor and capacitance in Figure are only the recommended value and they need to be tuned according to the specific customer’s application.

NOTE:

After the module is woken up by the WAKEUP key, it will sleep again after 5 seconds without doing other services.

After the module is woken up by the ON_OFF key, it will go to sleep again after 10 seconds without doing other services.
5.2. SPI

The module is supporting one SPI port (Master Only).

The signals are available on the following pads:

<table>
<thead>
<tr>
<th>Pad</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y6</td>
<td>SPI_CS</td>
<td>O/I</td>
<td>SPI - Circuit Select</td>
<td>CMOS 1.8V</td>
<td></td>
</tr>
<tr>
<td>AA7</td>
<td>SPI_CLK</td>
<td>O/I</td>
<td>SPI - Clock</td>
<td>CMOS 1.8V</td>
<td></td>
</tr>
<tr>
<td>AA5</td>
<td>SPI_MOSI</td>
<td>O/I</td>
<td>SPI - MOSI</td>
<td>CMOS 1.8V</td>
<td></td>
</tr>
<tr>
<td>Y8</td>
<td>DVI_MCLK</td>
<td>I/O</td>
<td>SPI - MISO</td>
<td>CMOS 1.8V</td>
<td></td>
</tr>
</tbody>
</table>
5.3. Communication ports

5.3.1. Serial Ports

The NE310H2 module is provided with by 2 Asynchronous serial ports:

- MODEM SERIAL PORT 0 (Main)
- MODEM SERIAL PORT 1

Several configurations can be designed for the serial port on the OEM hardware, but the most common are:

- RS232 PC com port
- microcontroller UART @ 2.8V (Universal Asynchronous Receive Transmit)
- microcontroller UART @ 5V or other voltages different from 2.8V

Depending from the type of serial port on the OEM hardware a level translator circuit may be needed to make the system work.

On the NE310H2 the ports are CMOS 1.8.

5.3.1.1. MODEM SERIAL PORT 0 (USIF0)

The main serial port on the NE310H2 is a +1.8V UART with two flow control signals (CTS, RTS).

It differs from the PC-RS232 in the signal polarity (RS232 is reversed) and levels.

The following table is listing the available signals:

<table>
<thead>
<tr>
<th>RS232 pin</th>
<th>Signal</th>
<th>PAD</th>
<th>Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C104/RXD0</td>
<td>AA15</td>
<td>Transmit line *see Note</td>
<td>Output transmit line of NE310H2 UART</td>
</tr>
<tr>
<td>3</td>
<td>C103/TXD0</td>
<td>Y16</td>
<td>Receive line *see Note</td>
<td>Input receive of the NE310H2 UART</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>A3, A7, A9, A13, A17, B4, B6, B10, B12, B14, B16, C19, D18, F8, F12, F18, G19, H6, H14, J19, K18, M18, N19, P6, P14, T8, T12, U1, V2, W19, Y2, Y4</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>C106/CTS0</td>
<td>AA17</td>
<td>Clear to Send</td>
<td>Output from the NE310H2 that controls the Hardware flow control</td>
</tr>
<tr>
<td>8</td>
<td>C105/RTS0</td>
<td>Y18</td>
<td>Request to Send</td>
<td>Input to the NE310H2 that controls the Hardware flow control</td>
</tr>
</tbody>
</table>

Note: The table cells are filled with hypothetical values for demonstration purposes.
NOTE:
Level conversion of UART0 requires the use of opendrain (OD) chips, such as NTS0104, TXS0104E.

According to V.24, some signal names are referred to the application side, therefore on the NE310H2-W1 side these signal are on the opposite direction:
TXD on the application side will be connected to the receive line (here named C103/TXD0)
RXD on the application side will be connected to the transmit line (here named C104/RXD0)
For a minimum implementation, only the TXD, RXD lines can be connected, the other lines can be left open provided a software flow control is implemented.

NOTE:
In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2-W1 when the module is powered off or during a reboot transition.
5.3.1.2. MODEM SERIAL PORT 1 (USIF1)

The secondary serial port on the NE310H2 is a +1.8V UART. It differs from the PC-RS232 in the signal polarity (RS232 is reversed) and levels. The following table is listing the available signals:

<table>
<thead>
<tr>
<th>RS232 pin</th>
<th>Signal</th>
<th>PAD</th>
<th>Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RXD1</td>
<td>AA11</td>
<td>Transmit line *see Note</td>
<td>Output transmit line of NE310H2 UART</td>
</tr>
<tr>
<td>3</td>
<td>TXD1</td>
<td>Y12</td>
<td>Receive line *see Note</td>
<td>Input receive of the NE310H2 UART</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>A3, A7, A9, A13, A17, B4, B6, B10, B12, B14, B16, C19, D18, F8, F12, F18, G19, H6, H14, J19, K18, M18, N19, P6, P14, T8, T12, U1, V2, W19, Y2, Y4</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>C106/CTS1</td>
<td>Y14</td>
<td>Clear to Send</td>
<td>Output from the NE310H2 that controls the Hardware flow control</td>
</tr>
<tr>
<td>8</td>
<td>C105/RTS1</td>
<td>AA13</td>
<td>Request to Send</td>
<td>Input to the NE310H2 that controls the Hardware flow control</td>
</tr>
</tbody>
</table>

NOTE:

In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2 when the module is not supplied or during a reboot transition.
NOTE:
According to V.24, some signal names are referred to the application side, therefore on the NE310H2 side these signal are on the opposite direction:
TXD on the application side will be connected to the receive line (here named C103/TXD1)
RXD on the application side will be connected to the transmit line (here named C104/RXD1)

In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2 when the module is powered off or during a reboot transition.

5.3.1.3. MODEM SERIAL PORT 3 (Auxiliary – DEBUG ONLY)
The third serial port on the NE310H2 is a +1.8V UART
The following table is listing the available signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>PAD</th>
<th>Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX_AUX</td>
<td>Y10</td>
<td>Transmit line</td>
<td>Output transmit line of NE310H2 UART</td>
</tr>
<tr>
<td>RX_AUX</td>
<td>AA9</td>
<td>Receive line</td>
<td>Input receive of the NE310H2 UART</td>
</tr>
</tbody>
</table>
5.3.1.4. RS232 LEVEL TRANSLATION

In order to interface the module with a PC com port or a RS232 (EIA/TIA-232) application a level translator is required. This level translator must:

- invert the electrical signal in both directions;
- change the level from 0/1.8V to +15/-15V.

The simplest way to translate the levels and invert the signal is by using a single chip level translator. There are a multitude of them, differing in the number of drivers and receivers and in the levels (be sure to get a true RS232 level translator not a RS485 or other standards).

An example of level translation circuitry of this kind is:

The example is done with a MAXIM MAX3238 Transceiver that could accept supply voltages of 3.3V DC.
Second solution could be done using a MAXIM transceiver TXS0104E. In this case, there is no need to use a single chip level translator.

NOTE:
In this case has to be taken in account the length of the lines on the application to avoid problems in case of High-speed rates on RS232.

The RS232 serial port lines are usually connected to a DB9 connector with the following layout:
5.3.1.5. 3.3V/5V UART level translation

If the OEM application uses a microcontroller with a serial port (UART) that works at a voltage different from 1.8V, then a circuitry has to be provided to adapt the different levels of the two set of signals. As for the RS232 translation there are a multitude of single chip translators. For example a possible translator circuit for a 5V/3.3V TRANSMITTER / RECEIVER can be:

![Diagram of 3.3V/5V UART level translation](image)

NOTE:

In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the module when the module is powered OFF or during an ON/OFF transition.
5.4. General purpose I/O

The NE310H2-W1 module is provided by a set of Configurable Digital Input / Output pins (CMOS 1.8)

Input pads can only be read; they report the digital value (high or low) present on the pad at the read time. Output pads can only be written or queried and set the value of the pad output. An alternate function pad is internally controlled by the NE310H2-W1 firmware and acts depending on the function implemented.

The following table shows the available GPIO on the NE310H2-W1:

<table>
<thead>
<tr>
<th>PAD</th>
<th>Signal</th>
<th>I/O</th>
<th>Default State</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>V11</td>
<td>GPIO_01</td>
<td>I/O</td>
<td>INPUT, Pull-Down</td>
<td></td>
</tr>
<tr>
<td>V13</td>
<td>GPIO_02</td>
<td>I/O</td>
<td>INPUT, Pull-Down</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>GPIO_03</td>
<td>I/O</td>
<td>INPUT, Pull-Down</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>GPIO_04</td>
<td>I/O</td>
<td>INPUT, Pull-Down</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>GPIO_05</td>
<td>I/O</td>
<td>INPUT, Pull-Down</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>GPIO_06</td>
<td>I/O</td>
<td>INPUT, Pull-Down</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

The internal GPIO’s pull up/pull down could be set to the preferred status for the application using the specific AT command.

Please refer for the AT Commands User Guide for the detailed command Syntax.

WARNING:

During power up the GPIOs may be subject to transient glitches.
5.4.1. Using a GPIO as INPUT

The GPIO pads, when used as inputs, can be connected to a digital output of another device and report its status, provided this device has interface levels compatible with the 1.8V CMOS levels of the GPIO. If the digital output of the device to be connected with the GPIO input pad has interface levels different from the 1.8V CMOS, then it can be buffered with an open collector transistor with a 47K pull up to VAUX.

NOTE:
In order to avoid a back powering effect it is recommended to avoid having any HIGH logic level signal applied to the digital pins of the NE310H2-W1 when the module is powered off or during a reboot transition. The VAUX pin can be used for input pull up reference or/and for ON monitoring.

5.4.2. Using a GPIO as OUTPUT

The GPIO pads, when used as outputs, can drive 1.8V CMOS digital devices or compatible hardware. When set as outputs, the pads have a push-pull output and therefore the pull-up resistor may be omitted.
5.4.3. Indication of network service availability

The SLED (B2) pin status shows information on the network service availability and Call status. In the NE310H2-W1 modules, the SLED needs an external transistor to drive an external LED. Therefore, the status indicated in the following table is reversed with respect to the pin status.

<table>
<thead>
<tr>
<th>Device Status</th>
<th>Led Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device off</td>
<td>Permanently off</td>
</tr>
<tr>
<td>Offline</td>
<td>Frequency 1Hz, Duty cycle 50%</td>
</tr>
<tr>
<td>Online</td>
<td>Frequency 0.3Hz, Duty cycle 10%</td>
</tr>
<tr>
<td>Data Sending</td>
<td>Frequency 10Hz, Duty cycle 50%</td>
</tr>
</tbody>
</table>

A schematic example could be the following:
5.5. External SIM Holder

SIM circuit reference design is as in the following schematic:

![SIM circuit schematic]

The minimum value of Capacitor on SIMVCC is 1μF.

5.1. ADC

The module provides one ADC to digitize the analog signal to 10-bit digital data such as battery voltage, temperature and so on. Using a specific AT command (ref. to AT user guide) can read the voltage value on ADC pin.

The read value is expressed in mV. The ADC voltage range is 0-1.4V.

In order to improve the accuracy of ADC, the related PCB line should be surrounded by ground.
6. RF SECTION

6.1. Antenna requirements

6.1.1. Main Antenna

The antenna connection and board layout design are the most important aspect in the full product design as they strongly affect the product overall performances, hence read carefully and follow the requirements and the guidelines for a proper design.

The antenna and antenna transmission line on PCB for a Telit NE310H2-W1 device shall fulfill the following requirements:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>617-2200MHZ</td>
</tr>
<tr>
<td>Gain</td>
<td>>0dBi</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ohm</td>
</tr>
<tr>
<td>Input power</td>
<td>>24dBm average power</td>
</tr>
<tr>
<td>VSWR absolute max</td>
<td>≤ 10:1 (limit to avoid permanent damage)</td>
</tr>
<tr>
<td>VSWR recommended</td>
<td>≤ 2:1 (limit to fulfil all regulatory requirements)</td>
</tr>
</tbody>
</table>
6.1.2. PCB Design guidelines

When using the NE310H2-W1, since there's no antenna connector on the module, the antenna must be connected to the NE310H2-W1 antenna pad by means of a transmission line implemented on the PCB.

In the case the antenna is not directly connected at the antenna pad of the NE310H2-W1, then a PCB line is needed in order to connect with it or with its connector.

This transmission line shall fulfill the following requirements:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic Impedance</td>
<td>50 ohm</td>
</tr>
<tr>
<td>Max Attenuation</td>
<td>0.3 dB</td>
</tr>
<tr>
<td>Coupling</td>
<td>Coupling with other signals shall be avoided</td>
</tr>
<tr>
<td>Ground Plane</td>
<td>Cold End (Ground Plane) of antenna shall be equipotential to the NE310H2 ground pins</td>
</tr>
</tbody>
</table>

The transmission line should be designed according to the following guidelines:

- Ensure that the antenna line impedance is 50 ohm;
- Keep the antenna line on the PCB as short as possible, since the antenna line loss shall be less than 0.3 dB;
- Antenna line must have uniform characteristics, constant cross section; avoid meanders and abrupt curves;
- Keep, if possible, one layer of the PCB used only for the Ground plane;
- Surround (on the sides, over and under) the antenna line on PCB with Ground, avoid having other signal tracks facing directly the antenna line track;
- The ground around the antenna line on PCB has to be strictly connected to the Ground Plane by placing vias every 2mm at least;
- Place EM noisy devices as far as possible from NE310H2-W1 antenna line;
- Keep the antenna line far away from the NE310H2-W1 power supply lines;
- If you have EM noisy devices around the PCB hosting the NE310H2-W1, such as fast switching lcs, take care of the shielding of the antenna line by burying it inside the layers of PCB and surround it with Ground planes, or shield it with a metal frame cover.
If you don't have EM noisy devices around the PCB of NE310H2-W1, by using a micro strip on the superficial copper layer for the antenna line, the line attenuation will be lower than a buried one.

6.1.2.1. Transmission line design

During the design of the NE310H2-W1 interface board, the placement of components has been chosen properly, in order to keep the line length as short as possible, thus leading to lowest power losses possible. A Grounded Coplanar Waveguide (G-CPW) line has been chosen, since this kind of transmission line ensures good impedance control and can be implemented in an outer PCB layer as needed in this case. A SMA female connector has been used to feed the line.

The interface board is realized on a FR4, 4-layers PCB. Substrate material is characterized by relative permittivity $\varepsilon_r = 4.6 \pm 0.4 \ @ \ 1 \ \text{GHz}$, $\text{TanD}= 0.019 \div 0.026 \ @ \ 1 \ \text{GHz}$.

A characteristic impedance of nearly $50 \ \Omega$ is achieved using trace width $= 1.1 \ \text{mm}$, clearance from coplanar ground plane $= 0.3 \ \text{mm}$ each side. The line uses reference ground plane on layer 3, while copper is removed from layer 2 underneath the line. Height of trace above ground plane is $1.335 \ \text{mm}$. Calculated characteristic impedance is $51.6 \ \Omega$, estimated line loss is less than $0.1 \ \text{dB}$. The line geometry is shown below:
6.1.2.2. Transmission Line Measurements

An HP8753E VNA (Full-2-port calibration) has been used in this measurement session. A calibrated coaxial cable has been soldered at the pad corresponding to RF output; a SMA connector has been soldered to the board in order to characterize the losses of the transmission line including the connector itself. During Return Loss / impedance measurements, the transmission line has been terminated to 50 Ω load.

Return Loss plot of line under test is shown below:

Line input impedance (in Smith Chart format, once the line has been terminated to 50 Ω load) is shown in the following figure:
Insertion Loss of G-CPW line plus SMA connector is shown below:

6.1.2.3. Antenna Installation Guidelines

- Install the antenna in a place covered by the LTE signal.
- The Antenna must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter;
- Antenna shall not be installed inside metal cases
- Antenna shall be installed also according Antenna manufacturer instructions.
7. MECHANICAL DESIGN

NOTE: The dimensions are in mm
8. APPLICATION PCB DESIGN

The NE310H2 modules have been designed in order to be compliant with a standard lead-free SMT process.

In order to easily rework the NE310H2 is suggested to consider on the application a 1.5 mm placement inhibit area around the module. It is also suggested, as common rule for an SMT component, to avoid having a mechanical part of the application in direct contact with the module.

NOTE:
In the customer application, the region under WIRING INHIBIT (see figure above) must be clear from signal or ground paths.
8.1. PCB pad design

Non solder mask defined (NSMD) type is recommended for the solder pads on the PCB.

![PCB Pad Diagram]

8.2. PCB pads

It is not recommended to place via or micro-via not covered by solder resist in an area of 0.3 mm around the pads unless it carries the same signal of the pad itself.

Holes in pad are allowed only for blind holes and not for through holes.

Recommendations for PCB pad surfaces:

<table>
<thead>
<tr>
<th>Finish</th>
<th>Layer Thickness (um)</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electro-less Ni / Immersion Au</td>
<td>3 – 7 / 0.05 – 0.15</td>
<td>good solder ability protection, high shear force values</td>
</tr>
</tbody>
</table>

The PCB must be able to resist the higher temperatures which are occurring at the lead-free process. This issue should be discussed with the PCB-supplier. Generally, the wettability of tin-lead solder paste on the described surface plating is better compared to lead-free solder paste.

It is not necessary to panel the application’s PCB, however in that case it is suggested to use milled contours and predrilled board breakouts; scoring or v-cut solutions are not recommended.
8.3. Stencil
Stencil’s apertures layout can be the same of the footprint (1:1), we suggest a thickness of stencil foil \geq 120 μm.

8.4. Solder paste

<table>
<thead>
<tr>
<th>Item</th>
<th>Lead Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder Paste</td>
<td>Sn/Ag/Cu</td>
</tr>
</tbody>
</table>

We recommend using only “no clean” solder paste in order to avoid the cleaning of the modules after assembly.

8.5. Solder Reflow

WARNING:

THE NE310H2 MODULE WITHSTANDS ONE REFLOW PROCESS ONLY.

9. PACKAGING

9.1. Tray

The NE310H2 modules are packaged on trays.

These trays can be used in SMT processes for pick & place handling.
9.2. Moisture sensitivity

The NE310H2 is a Moisture Sensitive Device level 3, in according with standard IPC/JEDEC J-STD-020, take care all the relatives requirements for using this kind of components.

Moreover, the customer has to take care of the following conditions:

a) Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).

b) Environmental condition during the production: 30°C / 60% RH according to IPC/JEDEC J-STD-033A paragraph 5.

c) The maximum time between the opening of the sealed bag and the reflow process must be 168 hours if condition b) “IPC/JEDEC J-STD-033A paragraph 5.2” is respected

d) Baking is required if conditions b) or c) are not respected

e) Baking is required if the humidity indicator inside the bag indicates 10% RH or more.
10. CONFORMITY ASSESSMENT ISSUES

10.1. Approvals

- RED
- RoHS and REACH

10.2. Declaration of Conformity

The DoC will be available here: https://www.telit.com/RED/

10.3. ANATEL Regulatory notices

"Este equipamento não tem direito à proteção contra interferência prejudicial e não pode causar interferência em sistemas devidamente autorizados"

"This equipment is not entitled to protection against harmful interference and must not cause interference in duly authorized systems"

NE310H2-W1/NL865H2-W1 Homologation #: 11086-20-02618
11. SAFETY RECOMMENDATIONS

11.1. READ CAREFULLY

Be sure the use of this product is allowed in the country and in the environment required. The use of this product may be dangerous and has to be avoided in the following areas:

- Where it can interfere with other electronic devices in environments such as hospitals, airports, aircrafts, etc.
- Where there is risk of explosion such as gasoline stations, oil refineries, etc. It is the responsibility of the user to enforce the country regulation and the specific environment regulation.

Do not disassemble the product; any mark of tampering will compromise the warranty validity. We recommend following the instructions of the hardware user guides for correct wiring of the product. The product has to be supplied with a stabilized voltage source and the wiring has to be conformed to the security and fire prevention regulations. The product has to be handled with care, avoiding any contact with the pins because electrostatic discharges may damage the product itself. Same cautions have to be taken for the SIM, checking carefully the instruction for its use. Do not insert or remove the SIM when the product is in power saving mode.

The system integrator is responsible for the functioning of the final product; therefore, care has to be taken to the external components of the module, as well as any project or installation issue, because the risk of disturbing the LTE network or external devices or having impact on the security. Should there be any doubt, please refer to the technical documentation and the regulations in force. Every module has to be equipped with a proper antenna with specific characteristics. The antenna has to be installed with care in order to avoid any interference with other electronic devices and has to guarantee a minimum distance from the body (20 cm). In case this requirement cannot be satisfied, the system integrator has to assess the final product against the SAR regulation.

The European Community provides some Directives for the electronic equipment introduced on the market. All of the relevant information is available on the European Community website:

http://ec.europa.eu/enterprise/sectors/rtte/documents/

The text of the Directive 99/05 regarding telecommunication equipment is available, while the applicable Directives (Low Voltage and EMC) are available at:

http://ec.europa.eu/enterprise/sectors/electrical/
12. REFERENCE TABLE OF RF BANDS CHARACTERISTICS

<table>
<thead>
<tr>
<th>Band</th>
<th>Freq. Tx (MHz)</th>
<th>Freq. Rx (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1920 MHz – 1980 MHz</td>
<td>2110 MHz – 2170 MHz</td>
</tr>
<tr>
<td>B2</td>
<td>1850 MHz – 1910 MHz</td>
<td>1930 MHz – 1990 MHz</td>
</tr>
<tr>
<td>B3</td>
<td>1710 MHz – 1785 MHz</td>
<td>1805 MHz – 1880 MHz</td>
</tr>
<tr>
<td>B4</td>
<td>1710 MHz – 1755 MHz</td>
<td>2110 MHz – 2155 MHz</td>
</tr>
<tr>
<td>B5</td>
<td>824 MHz – 849 MHz</td>
<td>869 MHz – 894 MHz</td>
</tr>
<tr>
<td>B8</td>
<td>880 MHz – 915 MHz</td>
<td>925 MHz – 960 MHz</td>
</tr>
<tr>
<td>B12</td>
<td>699 MHz – 716 MHz</td>
<td>729 MHz – 746 MHz</td>
</tr>
<tr>
<td>B13</td>
<td>777 MHz – 787 MHz</td>
<td>746 MHz – 756 MHz</td>
</tr>
<tr>
<td>B17</td>
<td>704 MHz – 716 MHz</td>
<td>734 MHz – 746 MHz</td>
</tr>
<tr>
<td>B18</td>
<td>815 MHz – 830 MHz</td>
<td>860 MHz – 875 MHz</td>
</tr>
<tr>
<td>B19</td>
<td>830 MHz – 845 MHz</td>
<td>875 MHz – 890 MHz</td>
</tr>
<tr>
<td>B20</td>
<td>832 MHz – 862 MHz</td>
<td>791 MHz – 821 MHz</td>
</tr>
<tr>
<td>B25</td>
<td>1850 MHz – 1915 MHz</td>
<td>1930 MHz – 1995 MHz</td>
</tr>
<tr>
<td>B26</td>
<td>814 MHz – 849 MHz</td>
<td>859 MHz – 894 MHz</td>
</tr>
<tr>
<td>B28</td>
<td>703 MHz – 748 MHz</td>
<td>758 MHz – 803 MHz</td>
</tr>
<tr>
<td>B66</td>
<td>1710 MHz – 1780 MHz</td>
<td>2110 MHz – 2200 MHz</td>
</tr>
<tr>
<td>B71</td>
<td>663 MHz – 698 MHz</td>
<td>617 MHz – 783 MHz</td>
</tr>
<tr>
<td>B85</td>
<td>698 MHz – 716 MHz</td>
<td>728 MHz – 746 MHz</td>
</tr>
</tbody>
</table>
13. **ACRONYMS**

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTSC</td>
<td>Telit Technical Support Centre</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>HS</td>
<td>High Speed</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication System</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High Speed Downlink Packet Access</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High Speed Uplink Packet Access</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver Transmitter</td>
</tr>
<tr>
<td>HSIC</td>
<td>High Speed Inter Chip</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identification Module</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog – Digital Converter</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital – Analog Converter</td>
</tr>
<tr>
<td>I/O</td>
<td>Input Output</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal – Oxide Semiconductor</td>
</tr>
<tr>
<td>MOSI</td>
<td>Master Output – Slave Input</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>MISO</td>
<td>Master Input – Slave Output</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock</td>
</tr>
<tr>
<td>MRDY</td>
<td>Master Ready</td>
</tr>
<tr>
<td>SRDY</td>
<td>Slave Ready</td>
</tr>
<tr>
<td>CS</td>
<td>Chip Select</td>
</tr>
<tr>
<td>RTC</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent Series Resistance</td>
</tr>
<tr>
<td>VSWR</td>
<td>Voltage Standing Wave Radio</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector Network Analyzer</td>
</tr>
<tr>
<td>TTFF</td>
<td>Time to First Fix</td>
</tr>
</tbody>
</table>
14. DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2019-06-26</td>
<td>First emission – Preliminary</td>
</tr>
<tr>
<td>1</td>
<td>2019-08-14</td>
<td>Updated overall document</td>
</tr>
<tr>
<td>2</td>
<td>2019-08-20</td>
<td>Updated 5.3, 5.3.1.3 chapters</td>
</tr>
<tr>
<td>3</td>
<td>2019-08-30</td>
<td>Updated chapters 2.1, 2.3, 2.4, 9, 10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated mechanical dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Temperature range</td>
</tr>
<tr>
<td>4</td>
<td>2019-09-30</td>
<td>Updated Chapter 3.1, 4.1, 4.2, 5.1, 6.1.1</td>
</tr>
<tr>
<td>5</td>
<td>2019-10-10</td>
<td>Updated Chapter 2.2, 4.1</td>
</tr>
<tr>
<td>6</td>
<td>2019-11-08</td>
<td>Added Watermark</td>
</tr>
<tr>
<td>7</td>
<td>2020-03-18</td>
<td>Updated overall document</td>
</tr>
<tr>
<td>8</td>
<td>2020-04-20</td>
<td>Updated Chapter 4.2, 4.4.3</td>
</tr>
<tr>
<td>9</td>
<td>2020-06-25</td>
<td>Added Sensitivity details</td>
</tr>
<tr>
<td>10</td>
<td>2020-08-12</td>
<td>Updated Chapter 3.1 and 3.2</td>
</tr>
<tr>
<td>11</td>
<td>2020-11-23</td>
<td>Updated power consumption table 4.3 section, Updated sensitivity table 2.6 (B20 with and without repetitions)</td>
</tr>
<tr>
<td>12</td>
<td>2020-11-25</td>
<td>Added Section ANATEL Regulatory Notices</td>
</tr>
</tbody>
</table>
www.telit.com

SUPPORT INQUIRIES

Link to www.telit.com and contact our technical support team for any questions related to technical issues.